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ABSTRACT
Cryptocurrencies like Bitcoin and the more recent Ethereum
system allow users to specify scripts in transactions and con-
tracts to support applications beyond simple cash transac-
tions. In this work, we analyze the extent to which these
systems can enforce the correct semantics of scripts. We
show that when a script execution requires nontrivial com-
putation effort, practical attacks exist which either waste
miners’ computational resources or lead miners to accept
incorrect script results. These attacks drive miners to an ill-
fated choice, which we call the verifier’s dilemma, whereby
rational miners are well-incentivized to accept unvalidated
blockchains. We call the framework of computation through
a scriptable cryptocurrency a consensus computer and de-
velop a model that captures incentives for verifying com-
putation in it. We propose a resolution to the verifier’s
dilemma which incentivizes correct execution of certain ap-
plications, including outsourced computation, where scripts
require minimal time to verify. Finally we discuss two dis-
tinct, practical implementations of our consensus computer
in real cryptocurrency networks like Ethereum.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and protection; K.4.4 [Computers And Society]:
Electronic Commerce—Cybercash, digital cash

Keywords
Bitcoin; Ethereum; cryptocurrency; incentive compatibility;
verifiable computation; consensus computer

1. INTRODUCTION
Cryptocurrencies such as Bitcoin [1] are attracting mas-

sive investments in computing power, and the power con-
sumed has been growing exponentially in recent years [2].
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Bitcoin can be viewed as a large network of miners compet-
ing in a lottery that awards newly minted currency, called
Bitcoins, in exchange for contributing computational
resources to solutions of cryptographic puzzles, or blocks.
Bitcoin miners collectively agree upon who receives the
minted Bitcoins and which transactions to accept. This pro-
cess of consensus, or agreement by majority, permanently
records decisions in a public ledger called the blockchain.
More than 50 cryptocurrencies use similar blockchain proto-
cols. While the core blockchain mechanism has been used for
establishing a public ledger of who-pays-whom transactions,
it has features that go beyond this function. Specifically, the
blockchain supports a light-weight scripting language, de-
signed primarily to allow conditional transactions which can
be repurposed for other applications. Emerging cryptocur-
rencies can now enable computation for applications such as
financial back-offices, prediction markets, distributed com-
putation (e.g.,, Gridcoin for BOINC [3]), and perhaps even
a decentralized Linux OS [4].

In Bitcoin, a transaction defines a particular activity in
the network, e.g., sending Bitcoin between users. Trans-
actions may include a script that specifies a validity con-
dition. Figure 1 illustrates a basic transaction having a
script check whether the payee in the transaction has the
private key corresponding to the recipient’s Bitcoin wallet
address. More interestingly, next-generation cryptocurren-
cies such as Ethereum [5] introduce a Turing-complete script
language which allows users to encode arbitrary computa-
tion as scripts and support a variety decentralized applica-
tions. The large number of miners on the cryptocurrency
network, who both execute and verify computational tasks,
reach agreement through an established consensus protocol.
We therefore refer collectively to these miners as verifers,
and the computation framework of scriptable cryptocurren-
cies as a consensus computer. We wish to characterize the
classes of computation that users can trust a cryptocurrency
network to execute and verify correctly.

Miners have two separate functions in the consensus com-
puter: checking that blocks are correctly constructed, or
proof-of-work, and checking the validity of transactions in
each block. While verifying correct block construction re-
quires a relatively small amount of work (two SHA256 calcu-
lations), checking the validity of transactions contained in a
block can take much more time for two reasons. First, the
number of transactions per block may be large (≈ 800 in
Bitcoin at the time of writing, and its capacity may soon



be extended to support high transaction rates [6, 7]). Sec-
ond, expressive transaction scripts in emerging cryptocur-
rencies such as Ethereum can require significant compu-
tational work to verify. These expressions create a new
dilemma for miners — whether the miners should verify
the validity of scripted transactions or accept them without
verification. Miners are incentivized to verify all scripted
transactions for the “common good” of the cryptocurrency
so to speak. However, verifying scripts consumes compu-
tation resources and therefore delays honest miners in the
race to mine the next block. We argue that this dilemma
leaves open the possibility of attacks which result in unver-
ified transactions on the blockchain. This means that some
computation tasks outsourced to cryptocurrency-based con-
sensus computers may not execute correctly.

Our work makes three new contributions. First, we de-
scribe the verifier’s dilemma in emerging cryptocurrencies
which shows that honest miners have an ill-fated choice:
whether to validate a block’s transactions or not. In either
case, they are susceptible to a set of attacks from dishon-
est miners. We show that malicious miners can attack their
peers with zero financial risk via the scriptability feature of
cryptocurrencies. Furthermore, our verifier’s dilemma im-
plies that rational miners have incentive to skip the verifi-
cation of expensive transactions to gain a competitive ad-
vantage in the race for the next block. However, this results
in an unvalidated blockchain containing unverified compu-
tation results.

Second, we propose a security model to formalize the con-
sensus computer. Our model allows us to study the incentive
structure and attacks that affect the correctness of com-
putations performed on a consensus computer. Verifiable
computation methods on consensus computers differ from
techniques that have been used on classical computers [8, 9,
10, 11, 12, 13, 14]. A consensus computer allows complete
decentralization of verification — the puzzle giver need not
trust any individual verifiers on the network or the prover
who provides the solution. In our model, the network is as-
sumed to implicitly agree on correct transactions if and only
if the incentives donot advantage dishonest miners. Ver-
ifiable computation techniques for classical setting have a
different goal: that of producing an explicit cryptographic
proof of the correctness of the computation. Often, such
techniques require an involved key setup phase, and have
impractical computational overheads for the prover.

Previous works implicitly assume that the Bitcoin con-
sensus computer will always generate correct solutions, i.e.,
miners will verify and agree on correct transactions [15, 16,
17, 18, 19, 20, 21]. Our present model provides a formal
explanation as to why this assumption holds and suggests
potential constraints of consensus computation in cryptocur-
rencies with more expressive scripting languages. Specifi-
cally, when the computational advantage of skipping verifi-
cation is low, say ε, rational miners gain little by cheating
thus behaving honestly to give correct solutions. We call
a system restricted to such primitives an ε-consensus com-
puter and expect it to compute correctly.

We propose two mechanisms to realize an ε-consensus
computer on Ethereum. Our first approach allows us to
achieve correctness by splitting the computation into sev-
eral smaller steps such that the consensus correctly verifies
each step. This approach achieves exact correctness in re-
sults but with higher computational burden to the network.

1 Input:
2 PreviousTX: ID of previous transaction
3 Index: 0
4 scriptSig: Sign(PubKey), PubKey
5
6 Output:
7 Value: 5000000000
8 scriptPubKey: %take Signature and PubKey as params
9 checkif Hash(PubKey) = Payee ’s ID,

10 checkif Sign(PubKey) is valid

Figure 1: Illustration of a simple transaction in Bitcoin. User’s
address is computed by hashing their public key. scriptPubKey is
the script that defines how the payee claims the recieved Bitcoin.

Our second mechanism allows for approximate correctness.
Specifically, we allow the approximation gap between sub-
mitted and correct results to be tunable to a negligible quan-
tity, at much lower computational cost. Whether one can
design a distributed, cryptocurrency system which permits
secure execution of a larger class of computations remains
an interesting open problem, as is the problem of determin-
ing the class of puzzles whose solutions admit light-weight
verification.

Contributions. In summary, our work makes the follow-
ing contributions:

• Verifier’s dilemma and attacks. We introduce a dilemma
in which miners are vulnerable to attacks regardless of
whether they verify a transaction or not. We further
show that miners are incentivized to skip the verifica-
tion and perform an attack to get more advantage in
mining the next blocks.

• Security model for a Consensus computer. We for-
malize the computation and verification by a consen-
sus computer. We investigate the incentive structure,
threat model and conditions under which a consensus
computer can realize correct outsourced computation.

• Techniques to realize an ε-consensus computer. We
propose techniques to realize our ε-consensus computer
in real cryptocurrency networks like Ethereum. We
illustrate the practical utility of our techniques with
examples from outsourced computation.

2. BACKGROUND: CRYPTOCURRENCIES

2.1 The consensus protocol
Most cryptocurrencies use a public peer-to-peer consen-

sus protocol known as Nakamoto consensus, named after
and introduced by the founder of Bitcoin [1], which does
not require a central authority. At the heart of this protocol
is a blockchain which acts as a public ledger and stores the
complete transaction history of the network. The security
of the blockchain is maintained by a cryptographic chain
of puzzles (or blocks). Miners validate and approve transac-
tions while generating, or mining, new blocks. Mining a new
block rewards newly minted coins to one of the miners that
demonstrates by consensus that it successfully solved a des-
ignated cryptographic puzzle. Figure 2 concisely illustrates
the structure of the blockchain data structure.

The protocol uses consensus in two places to make the
cryptocurrency robust. First, the network must agree on
the rules to verify valid blocks and transactions. Second,
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Figure 2: The Blockchain in popular cryptocurrencies like Bitcoin
and Ethereum. Each block consists of several transactions (Txs).

the data in the blockchain must be consistent across miners,
so that everyone knows who owns what. Thus the blockchain
acts as a base to verify which transactions are valid.

2.2 Transactions & scriptability
A transaction in a cryptocurrency defines a particular ac-

tivity in the network of that currency. For example, Fig-
ure 1 is a basic transaction in Bitcoin which transfers Bit-
coins from sender to receiver. The scriptPubKey component
(Line 8) allows the sender to define the receiver’s address and
on which condition he can spend the Bitcoins. The sender
can dynamically program the scriptPubkey to support var-
ious use cases.
Transaction verification. In order to verify a transaction,
one has to check whether the input provided in scriptSig

satisfies the logic encoded in the scritptPubkey of the Priv-
iousTX. For example, in Figure 1, miners will check if the
receiver is the intended payee (on Line 9) and he indeed
owns the payee’s address (on Line 10). The Bitcoin pro-
tocol states that the verification of a transaction TX should
happen in two places, when:

• A new transaction is broadcast (step 1). When a user
broadcasts TX to a miner, the miner verifies if the trans-
action is correct according to the latest blockchain
state. If so, he includes it in his block header to mine a
new block and propagates the transaction to his neigh-
bors.

• A new block is broadcast (step 2). When TX is included
in a newly found block, before accepting the block ev-
eryone will check the correctness of all transactions
contained in the block.

2.3 Incentivizing correctness
While it is clear that Nakamoto consensus incentivizes a

miner to mine new blocks with a reward of newly minted
coins, the incentive for others to correctly verify the trans-
actions is not generally understood. The folklore reasons
for why miners verify transactions in the Bitcoin blockchain
are:

• Verifying a transaction at both steps requires negligible
additional work compared to mining a new block. For
example, the Bitcoin transaction in Figure 1 has only
4 opcodes. Miners can do this extra check without
expending any significant computational work. The
cost of validation outweighs the miner’s risk of having
their earned Bitcoins in new blocks be discarded, if the
invalidity is detected in the future.

• When receiving a new block, miners can accept it with
or without verifying the included transactions. How-

1 code:
2 if msg.datasize ==2:
3 return msg.data [0] + msg.data [1]

Figure 3: An Ethereum contract that returns sum of two numbers.

ever, most miners want to maintain a cheap and cor-
rect system (the “common good”), so that the Bitcoin
blockchain remains healthy and Bitcoins act as a store-
of-value. Thus miners check the validity of a block’s
included transactions for free 1.

In this work, we study the financial incentives of users
more carefully to understand when these folklore assump-
tions may fail and what happens when they do.

2.4 Ethereum—Turing-complete scripting
Ethereum is a next generation cryptocurrency which en-

ables more applications beyond those supported by Bitcoin [5].
It provides a Turing-complete programming language in its
design which equips users with a mechanism to express con-
crete conditional semantics for transactions. Ethereum and
Bitcoin share nearly identical incentive structures. The only
conceptual difference is that Ethereum includes a small re-
ward for late, valid “uncle block” [5]. However, as in Bit-
coin, Ethereum miners maximize their rewards by racing to
extend the longest valid block. Ethereum also introduces
smart contracts which permit many potential applications
to run on top of the blockchain.

Smart contract. A smart contract is an entity on the
Ethereum blockchain which can embed many contractual
clauses and make it expensive for anyone to disoblige or
deviate from the contract after agreement [22]. Each smart
contract has its own address, balance, and storage space
which is used to run a specified script. While Bitcoin only
allows users to encode a stateless program, smart contracts
support stateful programs. Users can trigger a contract by
sending a transaction to its address. Once a smart contract
transaction gets included in the blockchain, everyone in the
network is expected to execute the contract script to verify
its validity. Figure 3 is a simple contract which returns the
sum of two numbers.

Gas system. It may be obvious to some readers that
having Turing-complete language in Ethereum script is a
problem. More specifically, users can write a transaction or
contract script with long verification time to perform Denial-
of-Service (DoS) attack on the network. For example, one
can write a simple transaction to make the network enter
an infinite loop while verifying the transaction. To prevent
such attacks, Ethereum introduces the concept of gas [23].
The script is compiled into Ethereum opcodes while stored
in the blockchain, and each opcode costs some predefined
amount of gas (a form of transaction fee) charged to trans-
action sender. When a sender sends a transaction to activate
a contract, he has to specify the available gasLimit that he
supports for the execution. The gas is paid to a miner who
verifies and includes the transactions in his block. Intu-
itively, the gas system seems to make it expensive for the
attacker to perform DoS attack to the system. However, as

1Note that only the one who finds the block receives a trans-
action fee, not those who verify.



1 init:
2 #Record the initiator , reward and data
3 contract.storage [0]= msg.sender
4 contract.storage [1]=0
5 contract.storage [2]= msg.value
6 #record the size n of the matrices
7 contract.storage [3]= msg.data [0]
8 #record the matrices A and B
9 contract.storage [4] = msg.data [1]

10 contract.storage [5] = msg.data [2]
11 contract.storage [6] = 1 #status
12 code:
13 if contract.storage [6] == 0:
14 return (1)
15 #data[C]: C is the result matrix
16 if msg.datasize == 1:
17 C = msg.data [0]
18 n = contract.storage [3]
19 A = contract.storage [4]
20 B = contract.storage [5]
21 # checking the result
22 for i in range(n):
23 for j in range(n):
24 cell = sum([A[i][k] * B[k][j]
25 for k in range(n)])
26 if cell != C[i][j]:
27 return (0)
28 #if everything is fine , send the reward
29 send (1000,msg.sender ,contract.storage [2])
30 contract.storage [6]=0 #update status
31 contract.storage [7]=C #store result
32 return (2)

Figure 4: Code snippet of a contract which allows an user can
outsource a matrix multiplication problem. The contract will
verify the correctness of the result before sending out the reward.

we later show, this mechanism does not actually solve the
DoS attack problem.

3. THE VERIFIER’S DILEMMA
In Section 2.3, we discussed incentives for Bitcoin min-

ers to verify transactions in a block. We show that these
motivations fail when block verification requires significant
computation effort. Various mechanisms can lead to longer
verification times. Ethereum users can create transaction
and contract scripts which place arbitrary computational
demands on miners, and similarly Bitcoin miners face high
computational demands when the number of transactions in
a single block is large.

In this section we present a verifier’s dilemma in which
the honest miners in the network decide whether to skip
the verification of expensive transactions or to maintain the
common good. To describe the verifier’s dilemma, we first
introduce a motivating smart contract in Ethereum which
we will use throughout the paper.

3.1 Example of outsourced computation
Figure 4 shows a code snippet of a contract in Ethereum

which allows a problem giver (G) to ask anyone to compute
A×B where A,B are two matrices of size n×n. In the init

phase, G first sends an transaction which specifies n,A,B,
and deposits the reward amount to the contract’s wallet ad-
dress. All information is public including the reward amount
since everything is stored on the blockchain. If a prover (P),
i.e., a user is interested in solving the problem, wants to
claim the solution to get the reward, he sends a transaction
with the result matrix C to the verifier.

When other miners receive the transaction from the prover,
they will verify if C = A×B by running the code phase in
the contract script. G expects that the Nakamoto consensus
protocol used in Ethereum will ensure that the result is cor-
rect due to the check on Lines 22–27, and only one prover
will get paid due to the update of the contract’s status on
Line 30. Note that for the purpose of demonstration, we use
an example in which verifying C requires to run the actual
computation again. In practice, there are several problems
that verifying whether a solution is correct is much easier
than finding one, e.g., solving a SAT instance, finding a
hash inversion, breaking cryptography key and so on. Thus,
G can create a contract to allow anyone to submit their so-
lution and rely on the network to verify the correctness as
in Figure 4.

3.2 Attacks
When a transaction that asks miners to verify whether

C = A × B appears in the network, miners have an option
to either verify or not to verify. We show that the miners
are susceptible to a resource exhaustion attack or a incorrect
transaction attack depending on their choice.

Attack 1 (Resource exhaustion attack by problem
givers). If miners honestly follow the protocol, they volun-
tarily verify all transactions in a new block which is broad-
cast to them (step 2 in Section 2.2). Thus, if an attacker
broadcasts his expensive transactions to the network, other
miners will have to spend a lot of power and time to verify
all the transactions. To prevent such situations, Ethereum
introduced a gas system to charge the transaction initiator
(sender) some amount of money for each operation he wants
verified.

However, the gas system does not prevent the attacker
from creating and including resource-intensive transactions
in his newly minted block. This is because transaction fee
(i.e., gas) is collected by the block founder only (in step 1,
Section 2.2). Thus, the attacker does not lose anything by
adding his transactions to his own block. The other min-
ers, on the other hand, have to spend a significant amount
of time verifying those transactions (in step 2, Section 2.2)
and get nothing in return. As a consequence, the attack not
only exhausts other miners’ resource, but also gives the at-
tacker some time ahead of other miners in the race for the
next block. Note that the attacker has complete freedom
to prepare the transactions, so the difficulty of verifying the
transaction script is in his control. Since gas charged in each
transaction is credited to his account in step 1, his attack
works at a zero fee (no loss).

As a concrete attack on the running example, the attacker
first introduces the contract in Figure 4 with big matrices
size, say n = 1000, and a small reward so that no one will
attempt to solve it. In the second step, he includes a trans-
action with an arbitrary matrix C that he knows whether
C = A× B before hand in all the blocks that he is mining.
He also prepares enough gas to execute the contract script
so that the transaction looks valid and normal. Other hon-
est miners on receiving the block from the attacker spend
time verifying the block and all the included transactions
to see if the block is valid and move on to the next one in
the chain. Since n is quite large, verifying a single transac-
tion from the attacker will take significantly more time than
normal transaction. The mining process of other miner will



be delayed, while the attacker enjoys considerable advantage
and has higher chance in finding the next valid blocks in the
blockchain.

Remark 1. In Ethereum, the number of operations one in-
cludes in a new block is bounded by oplimit, which can
be varied by a certain rate after every block by miners [5].
However, we argue that oplimit does not completely pre-
vent the above attack since attackers can increase oplimit

to a large enough value after some blocks to include his
resource-intensive transactions. We explain this in the Ap-
pendix A. Further, some may argue that attacker’s blocks
are likely to become stale, i.e., other blocks get broadcast to
the network faster, due to the long verification time. How-
ever, in [24], Miller et al. find that there are (approx. 100)
influential nodes in the Bitcoin network which are more effi-
cient in broadcasting blocks. An attacker can broadcast his
block to those influential nodes to reduce the chance that
his blocks getting staled significantly.

Attack 2 (Incorrect transaction attack by provers).
Due to Attack 1, rational miners have strong incentive to
skip expensive transactions to compete for the race of the
next block. The mechanism that drives the Bitcoin net-
work (Section 2.3) to achieve a consensus does not hold in
Ethereum. This is because verifying a transaction now may
take much more time and affect the miners’ mining speed.
As a result, when the puzzle giver G asks for the product
A × B, the malicious prover P can include a transaction
which has a wrong solution C. Since verifying C = A × B
requires long time, rational miners are well-incentivized to
accept it as correct without running the verification check.
Thus, the result of a contract/transaction, although is de-
rived from the consensus of the network, is incorrect and
unreliable. The problem giver G wastes his money for an
incorrect answer. Unlike in Attack 1, G is a honest miner in
this case. However his computational power is not enough
to match the rational miners who are incentivized to skip
the check.

It is clear that skipping verification is problematic. First,
P can include anything as the result of the contract execu-
tion, e.g., sending others’ money deposited in the contract’s
wallet to his wallet. Second, the health of the currency is
affected since it is impossible to correctly verify who-owns-
what. However, if the miners näıvely verify all the transac-
tions, they are vulnerable to Attack 1.

3.2.1 Findings
Attack 1 and Attack 2 are not only specific to the running

example, but are common challenges to any application that
relies on a consensus protocol. From the verifier’s dilemma,
we establish the following findings and implications.

Claim 1 (Resource exhaustion attack). In cryptocurren-
cies that allow miners to create expensive blocks, the honest
miners are vulnerable to amplified resource exhaustion at-
tacks. Malicious miners can perform the attack without fee
and gain significant advantage in finding the next blocks.

The attack is applicable to most cryptocurrency once they
become widely adopted, regardless of the applications run-
ning on top of the cryptocurrency. One can imagine the
same problem will ocur in Bitcoin if block sizes were to in-
crease dramatically, say to 1 GB per block. An attacker
has incentive to create such a huge block to waste other

miners’ resources so as to gain advantage in the race for
the next block. Such attacks have been reported in Bitcoin
recently [25, 26]. It is shown in [26] that one can create a
block-size transaction which requires miners to hash 19.1 GB
of data and takes an average of CPU 3 minutes to verify. Bit-
coin patched this vulnerability by allowing only pre-defined
standard transactions, and thus limiting the potential ap-
plications of Bitcoin. Ethereum, on the other hand, has
no such restrictions and permits users to define arbitrarily
contracts.

Claim 2 (Nakamoto consensus permits unverified blocks).
Assuming all miners are rational, Nakamoto consensus may
elect blockchains with unverified transactions.

Rationale. Miners in Nakamoto consensus-based cryptocur-
renices are vulnerable to a resource exhaustion attack (At-
tack 1). The time and computational resource required to
verify all transactions in a block expands significantly with
number of transactions. By skiping verifications, a miner
starts the race to find the next block earlier than honest min-
ers. As a result, rational miners yield a longer blockchain
by not verifying transactions in all blocks that they receive.
By Nakamoto consensus, the longer chain will be considered
the main chain 2 and contain unverified transactions.

Incentive incompatibility in existing cryptocurren-
cies. Since users can place arbitrary computation in a script,
miners in Ethereum have high incentive to skip verifying a
block. For example in Figure 4, one can set n arbitrar-
ily large to create a contract that requires, say, 30% of the
computational power used in mining a block to verify its
execution. That demand slows down the mining process of
miners and incentivizes rational miners to skip verification
in order to maintain their search speed in finding new blocks.
Even though the remaining honest miners still account for
the majority of the computational power in the network,
their effective power is reduced by 30%. Thus, with high
probability the rational miners will find more blocks and
get a longer blockchain by skipping the verification of these
transactions.

As we mentioned earlier, Ethereum introduced constraints
on the rate of gasLimit variation. Unfortunately, however,
we discuss in Appendix A why the gasLimit constraints are
not a fool-proof mitigation against our attacks.

In Bitcoin, although the amount of work required to verify
all the transactions is smaller, miners have non-zero incen-
tive to skip verification as well. Indeed, on July 4 2015, a se-
rious incident on the Bitcoin network was reported, wherein
large pools extended blocks containing invalid transactions
[27]. These pools mined on blocks without first verifying
the block’s transactions and caused a fork in the blockchain.
As the verifier’s dilemma describes, rational miners lack im-
mediate economic incentives to verify transactions in newly
mined blocks. The computational effort exhausted in verify-
ing transactions detracts from the race to mine subsequent
blocks, and it is possible that these pools skipped verifica-
tion in order to gain computational advantage in the mining
race.

2In Bitcoin, the protocol picks the blockchain which has
more amount of work (the sum of the difficulties in blocks).
However, it will be almost the same as comparing the lengths
of both the blockchains.



4. INCENTIVIZING CORRECTNESS
In this section, we study and address the design drawbacks

of the consensus protocol to prevent the aforementioned At-
tack 1 and Attack 2. Our goal is to incentivize miners to
verify all transactions in each new block broadcast to them.
Miners who deviate from the protocol should gain negligi-
ble advantage, and honest miners who verify all transactions
should suffer negligible disadvantage from dishonest or ma-
licious miners. Our consensus-based computation protocol
below is not tied to any particular cryptocurrency, however
we show how one might realize it in Ethereum in a way so
as to achieve correct computations.

4.1 Consensus-based computation model
We define the consensus computation model, which for-

malizes the verification process of transactions/contracts in
any consensus protocol, as follows.

Definition 1. A consensus-based computation protocol em-
ployed by a consensus computer involves three parties.

• Problem giver (G): who needs a solution for his partic-
ular problem and provides a function f which verifies
the correctness of a solution.

• Prover (P): who submits a solution s to claim the re-
ward from G.

• Verifiers (V): miners in the network execute f(s) to
decide whether s is a correct solution. In addition V
always try to mine a new block, which requires Wblk

work on average, in order to gain a reward.

In Bitcoin, the verification function f is rather simple. For
the transaction in Figure 1, the problem that a sender (G)
asks is to determine whether a receiver is the intended payee.
The solution s that the receiver (P) needs to provide is his
public key signed by his private key. The miners (V) will
execute a function f defined in scriptPubKey to determine
if s is correct and P can spend the received amount in that
transaction. Miners all try to find new blocks to get reward
as newly minted coins.

Let us denote by Wf the amount of work required to ex-
ecute a verification function f . We define the advantage of
rational miner as follows.

Definition 2. The advantage for a rational miner by skip-
ping the verification of a transaction with verification func-
tion f is:

Adv(f) = Wf −Wdf

where Wdf is the work required by deviating from the honest
protocol.

Generally Wdf = O(1), which is the cost of picking a ran-
dom result in {0, 1} or even Wdf = 0 if the miners just an-
swer a constant value. Based on Definition 2, the advantage
that a dishonest miner can get by skipping the verification
process in one block is:

Adv(Blk) =
N∑
i+1

Adv(fi) =

N∑
i=1

Wfi −O(1)

where N is the total number of transactions in a block Blk,
and fi is the verification function for the i-th transaction
in Blk. Our threat model assumes an ε-rational miner as
defined in Definition 3.

Definition 3. An ε-rational miner is one who honestly ver-
ifies the transactions in a block iff

Adv(Blk) ≤ εWblk,

and deviates from it otherwise.

A ε-rational miner is incentivized to deviate from the hon-
est protocol if the the work required to verify all transactions
in a block is higher than a threshold εWblk. Being dishonest
helps him have a higher chance of finding the next blocks
since others have to do a significant amount of work verify-
ing transactions. On the other hand, if the work required
is less, skipping the verification does not gain him much ad-
vantage (e.g., lesser than other practical factors like network
latency) to make his blockchain the longest one. Doing that
may even risk his new block value if other miners detect that
the previous block includes invalid transactions.

Incentivizing correct consensus computation. We
incentivize miners to correctly execute f by limiting the
amount of work required to verify all transactions in a block.
Our goal is to provide an upper bound in the advantage
that miners get by deviating from the honest protocol. This
means honest miners are also guaranteed not to run long
and expensive scripts while verifying the transactions. More
specifically, we propose a new model defined as follows.

Definition 4. An ε-consensus-based computation protocol
is a protocol in which the total amount of work that all
verification functions require miners to do is at most εWblk

per block.

A ε-consensus computer is a consensus computer that fol-
lows an ε-consensus-based computation. From Definition 3,
our ε-consensus computer is incentive-compatible w.r.t. ε-
rational. More specifically, it incentivizes miners to behave
correctly, i.e., honestly verify all transactions in a block.

4.2 Building an ε-consensus computer in
Ethereum

One can estimate the value of ε to be the largest amount
of “common good” work that the majority of miners find
acceptable. This value, however, depends on several fac-
tors including the real net-worth of applications on the cur-
rency, the network properties, the incentive mechanism in
the cryptocurrency, and individual miner’s beliefs about the
currency’s value. Estimating ε is a separate and interesting
research problem. Our next goal is to design a cryptocur-
rency network which supports ε-consensus computing for a
specific pre-chosen value ε.

We next describe how to support ε-consensus computer
based on Ethereum without requiring any major changes in
its design. We further discuss which classes of computa-
tions can be run correctly on the existing cryptocurrency.
While in general it is non-trivial to estimate the compu-
tation required by programs written in a Turing-complete
language [28], the gas charged for a transaction is a reliable
indicator of the amount of work required in that transac-
tion script. To make our approach clearer, we define a gas
function G(x) as in Definition 5.

Definition 5. The gas function G(x) determines the maxi-
mum gas amount that a program can require to do x amount
of work.

Since Ethereum already specifies the gas value for each
opcode in their design [23], computing G(x) is relatively



easy. Moreover, G(x) can be computed once and used for
all transactions. It only requires to update G(x) again if the
gas value is changed, or more opcodes are enabled.

We need only introduce a critical constraint on the trans-
action to make Ethereum an ε-consensus computer. That is,
miners should only accept to verify the transaction that has
gasLimit bounded by G(εWblk/N0), where N0 is the max-
imum number of transactions can be included in a block.
Generally N0 is fixed and represents the upper bound on
the computational capacity of the network in one block time.
We formally state our solution in Lemma 1.

Lemma 1 (Achieving ε-consensus computer in Ethereum).
Given a specific ε value, one can construct an ε-consensus
computer from Ethereum by limiting the gasLimit in every
transaction by

G

(
εWblk

N0

)
.

Proof. Let us denote Wtx as:

Wtx =
εWblk

N0
.

Since the gasLimit is at most G(Wtx), Wtx is the upper
bound on the amount of work required to verify a transac-
tion. Thus, the work required in verifying all transactions
in a block is no greater than εWblk. By Definition 3, this an
incentive-compatible strategy for ε-rational miners.

There are certainly classes of computations that require
more than Wtx and even εWblk work to execute. While one
can code such scripts in Ethereum, these puzzles fall outside
the class of computations that our ε-consensus computer
model can guarantee to execute and verify correctly.

4.3 Supporting more applications on an
ε-consensus computer

We discuss two techniques for supporting puzzles which
require greater than Wtx verification in Ethereum. One
technique achieves correctness but sacrifices performance la-
tency since it distributes the computation across multiple
transactions and blocks that fit in the ε-consensus com-
puter model. This technique effectively amortizes the veri-
fication cost across multiple transactions and blocks in the
blockchain. The second technique, on the other hand, sac-
rifices only exactness and achieves probabilistic correctness.

4.3.1 Exact consensus computation
We introduce our first technique in the context of exact

solutions. Here we simply split the execution of the script
into smaller steps such that verifying each step requires at
most Wtx work. Once all the steps have been run and verified
as separate scripts, the outcome is the same as the result one
would obtain from correctly executing the original script.
Although the total verification work that the ε-consensus
computer has to do is the same regardless of whether we use
a single or multiple scripts, splitting the task guarantees a
correct outcome because the ε-consensus computer correctly
verifies smaller. We illustrate an alternative implementation
for outsourcing matrix multiplication in n2 steps where Wtx

is O(n) in Figure 5 (instead of 1 transaction where Wtx is
O(n3) as in Figure 4).

The execution of the contract in Figure 5 works as follows.
P first submits C to the contract as the solution for A×B.

1 init:
2 ...
3 contract.storage [7] == 0 #no. of rounds
4 code:
5 ...
6 if msg.datasize ==1:
7 contract.storage [8]= msg.data [0] #store C
8 contract.storage [9]= msg.sender #store prover
9 return ("Submitted C")

10 #verify the result
11 elif msg.datasize == 0:
12 C = contract.storage [8]
13 i=contract.storage [7]/n
14 j=contract.storage [7]%n
15 contract.storage [7] += 1
16 cell = sum([A[i][k] * B[k][j]
17 for k in range(n)])
18 if cell != C[i][j]:
19 return ("Invalid result")
20 #after n^2 checks have passed
21 #send the reward to the prover
22 if contract.storage [7] == n*n:
23 send_reward ()
24 ....

Figure 5: Matrix multiplication with O(n) work per transaction
on a consensus computer.

The verification happens across the next n2 steps when P
sends n2 transactions to the contract. Each transaction ver-
ifies a particular and different element Ci,j of the submitted
result. A counter stores the number of passed checks (Lines
13–15).

Advantage across multiple transactions. A careful
reader may be concerned that a rational miners might recog-
nize the global connection between the n2 transactions and
skip verifying all of them to gain an advantage. However,
the advantage from skipping the verification of transactions
in the i-th block only helps the miners find the (i + 1)-th
block faster. In other words, one cannot“save”the“unspent”
advantage in skipping the verification in one block and use
that in the future since the competition for finding a new
block “restarts” after every block. Essentially, we amortize
the advantage of the computation across multiple transac-
tions and blocks such that at any given block, the advantage
of rational miners is bounded by εWblk. Thus our approach
does not break the incentive compatibility of the ε-consensus
computer model.

Depending on the nature of the application, multiple steps
can either happen in parallel or must be executed sequen-
tially. For example in matrix multiplication, P can send
simultaneously n2 transactions. The reason is verifying Ci,j
does not rely on the correctness of Ci,j−1, and the order of
verifying the two elements does not matter. On the other
hand, if, say, Ci,j = 2 ·Ci,j−1, the prover would have to wait
until Ci,j−1 gets verified before sending the next transac-
tion which verifies Ci,j . In section 6, we illustrate these two
scenarios with case studies.

4.3.2 Approximate consensus computation
Our second approach avoids the latency of sequential com-

putation processes by employing probabilistic, light-weight
verification. This approach will guarantee the correctness
of the solution to a certain (adjustable) extent while only
having to check a small portion of the solution.

Definition 6. Let us denote a problem Z : {0, 1}n →
{0, 1}m, an input x ∈ {0, 1}n and a claimed solution y′ ∈



{0, 1}m of Z(x). We say Z is (δ, λ)-approximate verifiable if
there exists a verification function f such that f accepts y′

only if y′ differs from Z(x) in at most δ bits with probability
greater than λ.

Our task is to encode f to ensure that if a solution y′ is
deemed correct only when y′ does not differ much from the
correct solution, i.e., different in at most δ bits. Further-
more, in order to run f in a ε-consensus computer model, f
should not require more than Wtx work to finish. The high
level insight to encode such a f is that by randomly sampling
and checking an entry of the output, there is some proba-
bility that we can detect if the output is incorrect at that
sample. If we find an incorrect sample, we can conclude that
the submitted solution is wrong and reject the solution. The
more samples we take, the better the probability of catching
an error. Otherwise, the solution is close to a correct one
with an overwhelming probability greater than λ.

In Definition 6, we avoid defining too precisely the notion
of “bits” and distance between two solutions since they vary
slightly on specific encoding of the verification function f .
One can translate “bits” as the positions in an array, or the
pairs of elements, where the solution differs. In either case,
the fraction of errors δ would change accordingly to the defi-
nition of “bit.” For example, in the case of sorting, each “bit”
would correspond to a pair (i, j) where i < j and a bit in a
solution y′ differs from that in Z(x) if y′[i] > y′[j].

We borrow the above sampling idea from the property
testing literature which shows that in many practical in-
stances one can determine whether a large object has a de-
sired property by inspecting a small number of samples [29,
30]. For instance, property testing is a technique which al-
lows a verifier to sample the output to decide whether an
array is sorted. Property testing differs from verifiable com-
putation, however, in that verifiable computation deals with
general computations whereas property testing can only con-
sider decision problems. Decision problems are not inter-
esting for consensus verifiability because without doing any
work a prover P can simultaneously post two solutions, “0”
and “1,” and one of these is guaranteed to be correct. Such
an answer shifts the entire burden of computation onto the
verifier unless the prover also provides some certificate which
helps the verifier to check his answer more quickly. To use
property testing in verifiable computation, we need to check
the two following properties:

• Property 1. The provided solution differs in at most
δ-bits from a solution that satisfies the property of the
computation with high probability.

• Property 2. The provided solution is computed from
the given input x with high probability.

Note that given a particular number of samples, the correct-
nesses that we can guarantee for Property 1 and Property 2
are different. For example, in the case of sorting a n-element
array, n random samples may be sufficient to check whether
the provided solution has the same elements as the given
array with a 1− λ = 99% guarantee (Property 2). However,
it may take more than n samples to fully check if the pro-
vided solution is sorted (Property 1). Thus, to achieve the
overall 99% guarantee of correctness for both Property 1 and
Property 2, the number of samples one must take is the max-
imum of the numbers of samples to attain 99% guarantee of
correctness for either of the checks.

5. IMPLEMENTATION
In this section we discuss the challenges while encoding a

verification function f in our ε-consensus computer model.
We further discuss techniques to address those challenges.

5.1 Challenges in implementation
The presence of contract and Turing-complete language

in Ethereum enables a verifiable computing environment in
which users can ask anyone to solve their problem and get
the results verified by the network. We have established how
to encode those verification computations f in Section 4.2 to
work with our ε-consensus computer model. In fact, P can
do the computation to arrive at the solution on his physical
computer. G encodes the verification function f such that
it takes P’s solution and auxiliary data for the verification
process. For example, if G asks P to sort an array, G can
encode f to ask P to provide the sorted array (result) with
the map between the result and the input. Our previous
contract in Figure 5 is a concrete example where the matrix
multiplication is outsourced to the network. We summarize
the properties such a contract in our ε-consensus computer
model can achieve.

1. Correctness. G receives correct results.
2. No prior trust. No pre-established trust between P

and G is required.
3. No interaction. No interaction between P and G is

required in order to verify the result.
4. Efficiency. G and P have to do only a modest amount

of work.
5. Fairness. P is rewarded for a valid solution.

Properties 1–4 are immediate when we encode the verifica-
tion function f in our ε-consensus computer model. Specifi-
cally, correctness is guaranteed since miners are incentivized
to verify all computation. P and G do not need to trust or
know each other, yet G cannot deviate after knowing the
result. However, there are several challenges while imple-
menting those verification function using smart contracts.
In fact, simple smart contracts like the one in Figure 5 can-
not guarantee fairness property due to one of the challenges
that we describe below.

• Insecure relay attack. Once P finds a solution C,
he broadcasts a transaction having C to his neighbors
and to the whole network. However, since the solution
is in the plaintext, a rational neighbor node may copy
C, delay or even discard the prover’s transaction and
forge a new transaction to claim the reward.

• How to randomly sample in Ethereum? In order
to verify computations via sampling, we need a mech-
anism for generating random numbers. We want to
make sure that the random generator is unbiased in
seed selection, and that the seed is unpredictable. If it
is biased or predictable, the correctness property may
be violated since P can submit a solution which is cor-
rect only in the “bits” that will be sampled. Ethereum
does not natively support a random generator opera-
tor. We discuss our solution in Section 5.2.

Another desirable property of a random generator is
that it should be consistent across the network, i.e., it
should return the same sample set to everyone. Oth-
erwise an honest miner M could verify that a solution
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Figure 6: The commitment scheme used in our outsourced com-
putation case studies. CT accepts the commitment in transaction
TX b before recieving solution in TX a. That means P should see
TX b in the blockchain before he broadcasts TX a to CT .

is correct with his samples but the other miners see
it incorrect since they have a different sets of sam-
ples. Although M is honest, the other miners reject
his block because with their sample sets M ’s transac-
tion including his solution is invalid. It is unfair for
M and problematic for the network as a whole since
network consensus then becomes probabilistic.

One näıve approach to defeat the insecure relay attack
above is for the prover P to encrypt and sign his solution
since a key management system already exists in Ethereum.
Unfortunately this does not work since every miner needs
to access P’s solution in order to verify the corresponding
puzzle. In the next section, we devise a commitment scheme
which helps us obtain fairness and discuss how to implement
all the necessary components in our ε-consensus computer
protocol.

5.2 Construction
We now resolve the bullet points raised above in Sec-

tion 5.1.
Achieving fairness via a commitment scheme. A

commitment scheme provides two important features. First,
it ensures that other users cannot see, thus steal P’s solution
and claim the reward. Second, P once commits a solution
cannot later alter it. This is to prevent some prover from
submitting a fake answer to win the race with others (since
only one prover is paid for correct solution), then spending
more time computing the correct solution.

Our commitment scheme leverages the one-way hash func-
tion SHA2, which is already used in current cryptocurrencies
to compute proof-of-work and transaction ID’s. Specifically,
we ask P to prepare a transaction TX a that he includes
his solution, and a transaction TX b to commit TX a to the
contract. P first sends TX b, which includes TX a’s ID, to
the contract to say that he has the solution and will send
that in the next transaction TX a—commit phase. Once the
contract accepts P’s commitment, he sends TX a and pro-
ceeds further as in without having the commitment—release
phase. Our commitment scheme is shown in Figure 6.

Since an ID is computed by crytographically hashing the
transaction data, other miners by observing TX a’s ID in
TX b are not able to construct TX a to get C. Moreover, P
cannot alter TX a by a different solution since doing that will
raise a conflict between the committed ID and the new one.
In addition, once TX b gets accepted and P broadcasts TX a,

the neighbors cannot claim the rewards with the solution
observed in TX a. This is because the contract is waiting for
transaction TX a which has been committed before.

Random sampling in Ethereum. Recall that for prob-
abilistic verification, we need a psuedo random generator to
randomly sample elements in a solution. Our key idea is
to leverage some data in future blocks that miners do not
know and cannot predict at the time of creating the trans-
action/contract. For instance, the randomness source can
be the hash of the next block. Given a pseudo-random vari-
able R as the next block hash, one can generate n other
pseudo-random numbers simply by taking a hash as:

SHA256(R || i)

in which 1 ≤ i ≤ n, and || is a concatenation operator.
Since the information of a block is public and consistent in

the network, all miners when run the above pseudo-random
generator will get the same set of samples, thus achieving
consistency. Further, the information of block is unknown
before it is mined by miners, coupling with the random-
ness of SHA256 function makes our pseudo-random generator
fair.

6. CASE STUDIES
In this section, we exhibit several problems that can be

solved by using our ε-consensus computer model. We are
interested in the problems that require high computational
resource to verify if are encoded näıvely without using our
techniques discussed in Section 4.2. The purpose of those
examples is to illustrate the practicality of our techniques,
and also describe how to encode f for various δ-approximate
verifable problems. Our examples consists of several prob-
lems in diverse domains such as Graph Theory, Linear Al-
gebra, Number Theory and simple operations like matrix
multiplication and sorting. In several of these cases we are
able to easily verify whether a solution is correct. However,
for several interesting problems verifying the correctness of a
solution appears to be elusive. We try to circumvent this dif-
ficulty by taking a recourse in an approximate verifiability.
We illustrate how one can encode the verification function
f to employ the light-weight verification and approximately
verify the correctness of several problems. For the conve-
nience of readers, we list our case studies in Table 1. In
this section, we consider the basic operations as basic arith-
metic operations, e.g., addition, multiplication and compar-
ison over 32-bit integers, unless otherwise stated.

6.1 Exact computations
We show several applications that we can encode f to

guarantee the correctness of a solution in an ε-consensus
computer model. We also discuss the potential high latency
due to the need of distributing the computation to multiple
transactions.

6.1.1 GCD of Large Numbers
This example computes the exact GCD of two large num-

bers, each of size n bits. The usual way to solve to the great-
est common divisor problem on a classical computer goes via
the Euclidean algorithm which takes work proportional to
O[log3(n)]. We show that by encoding the verification func-
tion differently, one can verify the result in quadratic time
O[log2(n)]. More interestingly, this example requires only a
single solution transaction — that is, guarantees exactness



Problems Exact Approx # TXs Wtx #. Rounds
GCD 3 O(1) O(1) 1

Dot Product 3 O(n) O(1) O(logn)
Matrix Multiplication (Fig. 4) 3 O(1) O(n3) N/A
Matrix Multiplication (Fig. 5) 3 O(n2) O(n) N/A

Matrix Multiplication (Section 6.1) 3 O(n3) O(1) N/A
Matrix Multiplication 3 O(n) O(1) O(logn)

Sorting 3 O(1) O(1) N/A
k-coloring 3 O(1) O(1) N/A

Table 1: Case studies for outsourced computation in our ε-consensus computer model. Wtx represents the amount of work required in
each transaction. #. Rounds is the number of rounds required to have a solution verified if the transactions have to send in order (N/A
means there is no such order).

with no additional latency. Specifically, the algorithm is as
below.

1. G posts two integers m and n.

2. P posts five integers a, b, x, y, and z.

3. V checks that:

(a) ax = m, bx = n,

(b) |y| < b, |z| < a, and

(c) ay + bz = 1,

(d) If all of these checks succeed, then V accepts P’s
solution. Otherwise V rejects P’s solution.

We claim that if both checks above succeed, then gcd(m,n)
= x. If (a) is satisfied, then clearly x divides m and y di-
vides n. To see that x is the smallest such number, we
appeal to Bézout’s Identity which tells us that a and b are
relatively prime iff there exist y and z satisfying (b) and (c).
If some integer greater than x divided both m and n, then
by uniqueness of factorization, x would also divide that in-
teger, forcing a and b to have a nontrivial common factor.
Our verification uses 10 arithmetic operations over inputs of
size log(n).

6.1.2 Dot product
We compute the exact dot product of two vectors

(a1, . . . , an) · (b1, . . . , bn) = a1b1 + · · ·+ anbn

by way of a sequence of transactions on the consensus com-
puter. The puzzle giver G need not perform a single basic
operation, while the miners perform no more than 3 basic
operations per transaction. Each transaction will permit us
to reduce the number of additions in the running sum by
one. The puzzle giver G will post dn/2e transactions to the
first block, dn/4e transactions to the second block, dn/8e to
the third, and so on for a total of at most n transactions. For
simplicity of presentation, we will assume that G knows the
quantity n, however this assumption is not necessary. One
could modify the protocol below so that we iterate over all
indices i for which ai and bi are both defined (with possibly
one extra pair an+1 = bn+1 = 0 added in case n is odd), and
similarly for the partial sums in the subsequent stages.

1. For each i ≤ dn/2e, G creates a puzzle transaction T1,i

requesting the sum a2ib2i + a2i+1b2i+1.
2. For each i, P posts a number s1,i equal to the requested

sum, in some permanent, public place.

3. For each i, V accepts P’s solution iff s1,i = a2ib2i +
a2i+1b2i+1.

Subsequent stages k, for k = 1 up to the least k such that
2k ≥ n proceed similarly in a recursive way:

1. For each i ≤ dddn/2e/2e . . . /2e (k 2’s in this expres-
sion), G creates a puzzle transaction Tk,i requesting
the sum sk−1,2i + sk−1,2i+1.

2. For each i, P posts a number sk,i equal to the requested
sum, in some permanent, public place.

3. V accepts P’s solution iff ∀i sk,i = sk−1,2i + sk−1,2i+1.

By induction on k, if for each i P’s solution is correct, then∑
i sk,i is equal to the desired dot product. In the final stage,

we obtain a single value which equals the dot product, and
so our multi-stage protocol succeeds. It is easy to verify that
the work required in each transaction is O(1) 3.

6.2 Verification with random sampling
As discussed earlier, some applications have solutions

which are not easy or cheap to be verified. We show how to
encode the verification function f for such applications to
achieve probabilistic correctness with much smaller latency.

6.2.1 Approximate Sorting
We apply the direct sampling method so that with high

probability the consensus will accept a correct solution but
reject a solution with many errors. Let A denote the in-
put array of |A| = n elements. Let B denote the claimed
output array of n elements and f denote a permutation on
{1, . . . , n}, representing the claimed sorting order.

Definition 7 (δ-approximate sorting). For δ ≥ 0, we say
that an array B (together with a permutation f) is a δ-
approximate solution to sorting array A if:

• at most δ fraction of elements of B are incorrectly
mapped by f , i.e., A[i] 6= B[f(i)], and
• at most δn2 pairs of B are out of order.

We fix a δ > 0 and let k denote the number of sample
used by our protocol. The work required in the protocol

3 In Figure 5, we showed how to compute the exact product
of two matrices using n2 transactions, each requiring O(n)
verification work. By applying the above mutli-transaction
dot product contract n2 times, one could also compute a
matrix product via transactions each requiring only O(1)
work.



below will be directly proportional to k. The protocol be-
low guarantees that if the output is correctly sorted then it
is accepted with high probability and if the output is not
δ-approximately sorted then it is rejected with high proba-
bility. Thus we get the guarantee that if an output is ac-
cepted then it must be δ-approximately sorted with high
confidence. The confidence can be made arbitrarily close to
1 at the cost of increasing the sample size.

1. G posts an array A of n elements.
2. P posts an array B of n elements and f , a permutation

on {1, . . . , n}.
3. V chooses k random indices p1, . . . , pk ≤ |A| and k ran-

dom pairs of indices (q1, r1), . . . , (qk, rk) and checks:

(a) if: for all i ≤ k, A[pi] = B[f(pi)], and
(b) if: for all i ≤ k, if qi ≤ ri then B[qi] ≤ B[ri].
(c) If both the checks (a) and (b) succeed then V

accepts P’s solution. Otherwise V rejects.

The verification requires k equality checks and k sorting
comparisons.

Soundness of the protocol: Let us first assume that P’s solu-
tion (B, f) is a correct solution to sorting A, i.e., B has no
errors in the bijection f and no pairs are out of order. In this
case, check (a) and (b) will not fail as there are no errors.
Thus the protocol will accept every correct solution.

Proof of approximate correctness: On the other hand if the
array B differs from A in more than δ|A| places, then with
probability at least δ, V will detect this error in (a). Simi-
larly, if at least δ|A|2 pairs of elements in B are out of order,
then with probability at least δ, the verifier V will detect
this error in (b). The probability that (a) is satisfied for
all i is less than (1− δ)k, and similarly the probability that
(b) is satisfied for all i is less than (1− δ)k. Thus the proba-
bility that both of the checks succeed is at most the product
(1 − δ)2k. The verifier V fails to detect an error only when
both checks (a) and (b) succeed. If we choose k large enough
such that (1− δ)2k < λ then we the protocol will reject any
solution that is not δ-approximately sorted with probability
greater than 1− λ.

6.2.2 Approximate Matrix Multiplication
We want to guarantee that if our verification function f

accepts C then at least 1 − δ fraction of the entries of C
match with A × B with high probability. The idea is to
randomly pick a small number of entries of C and verify that
they are computed correctly. For this check one may use the
protocol for the Dot Product described in Section 6.1.2. By
a calculation similar to the one for Approximate Sorting
in Section 6.2.1, log λ/log(1− δ) samples suffice to ensure
(δ, λ)-approximate verifiability.

6.2.3 Approximate 2-Coloring
A 2-coloring of a graph is an assignment of one of two

specified colors to each of its nodes. An edge is colored prop-
erly if the two endpoints of the edge are assigned different
colors. Recall that a graph is 2-colorable, or bipartite if there
a 2-coloring of its nodes such that every edge is properly col-
ored. A 2-coloring is δ-approximate if at most δ fraction of
the edges are not colored properly.

Using the sampling method, we design a protocol for the
following decision problem: does a given graph A have a

δ-approximate 2-coloring? Our protocol is inspired by the
property testing algorithm for 2-coloring and its correctness
relies on Szemeredi’s Regularity Lemma [31, 32].

1. G posts a graph A.
2. P posts either posts:

(a) “yes” and a 2-coloring of A, or
(b) “no” and an array of

k(δ) =
34 ln4(1/δ) ln ln(1/δ)

δ

nodes from A.

3. V checks:

(a) If P answered “yes,” then V chooses k(δ)-random
nodes v1, . . . , vk(δ) from A.

i. V accepts P’s solution if the subgraph induced
on v1, . . . , vk(δ) is 2-colorable, and

ii. V rejects otherwise.

(b) If P answered “no,” then

i. V accepts P’s solution if

A. P’s solution is an odd cycle, and
B. all the edges of the odd cycle are present

in A.

ii. V rejects if either of the above conditions fails.

Soundness of the protocol: With probability greater than 1/2,
a graph is not δ-approximate 2-colorable if and only if a ran-
dom subset of k(δ) nodes contains an odd cycle [33]. Thus
if the graph is not δ-approximate 2-colorable then we will
detect this with probability at least 1 − λ by repeating the
above protocol dlog2(1/λ)e times. On the other hand, if the
graph is 2-colorable then no subset of k(δ) nodes will contain
an odd cycle. Hence our protocol will correctly accept the
solution. Thus our protocol computes correctly with high
probability both when the answer is “yes” or “no.”

Complexity of verification: Note that if the graph is not δ-
approximate 2-colorable then indeed we have a constant size
witness for this. Hence the “no” answer from the prover has
a light-weight verification. It remains to show that the “yes”
answer from the prover also has an easy verification. This
can be achieved by a sampling method similar to the one
used for sorting. If more than δ fraction of the edges are not
properly colored by P’s 2-coloring, then we will catch a vio-
lated edge with high probability using s = k(δ) · dlog2(1/λ)e
samples.

In the “yes” instance, V does s basic operations to choose
the random nodes and s2 comparisons to check that the
subgraph inherits a 2-coloring. In the “no” instance, s basic
operations are used to check whether P gave an odd cycle,
and s basic operations to check it’s presence in A for a total
of 2s basic operations.

Finally, we remark without proof that our protocol can in
fact be modified to verify approximate c-coloring as well for
any constant c using [33]; see also [32].

7. RELATED WORK
Consensus protocol. Since the Nakamoto consensus pro-
tocol first appeared [1], numerous works have investigated
alternative consensus algorithms [34, 35, 36, 37]. The prob-
lem we look at in this work is independent of the underlying



consensus algorithm used in the network as the verifier’s
dilemma arises in any cryptocurrency that has high block’s
verification cost.
Incentive compatibility in cryptocurrency. Apart from
verifying blocks and transactions, mining new blocks is one
major activity in cryptocurrencies. Block mining requires a
huge computational resource, thus miners often join hands
to mine together in a pool. Several previous works also study
the incentive compatibility of Bitcoin mining [38, 39, 40, 41].
For example, in [38, 40], the authors prove that pooled min-
ing protocol is not incentive compatible by showing that
miners and pools are susceptible to a block withholding at-
tack. Our work also studies the incentive compatibility in
cryptocurrency, but via the lens of the verification activity.
We show that in a network which allows Turing complete
scripts, miners are vulnerable to a new class of attacks.
Security analysis of Bitcoin protocol. A recent paper
by Gary et al. models and analyses security of the Bitcoin
protocol [42]. Gary et al. prove that Bitcoin can achieve all
ideal properties, e.g., common prefix, chain quality, only if
f is negligible, where f is the number of proof-of-work so-
lutions that miners can generate while a block is broadcast.
We find that our finding follows closely to their result. In
fact, the parameter f in [42] typically depends on the pa-
rameter ε in our paper. The present work showed that when
ε is sufficiently large, the verifier’s dilemma exists. Our so-
lution is to keep ε small, which is equivalent to keeping f
close to 0.
Verifiable computation. Our proposed outsourced com-
putation scheme on an ε-consensus computer is the first sys-
tem to achieve all the ideal properties mentioned in Sec-
tion 5. A popular line of work uses classical computers for
verification that involves prior trust establishment to guar-
antee that G does not deviate after knowing the solution [8,
9, 10, 11, 12, 13, 14]. A key difference is in the assumptions
and goals. Our goal is not to produce explicit proofs of cor-
rectness, rather to enable an incentive structure where cheat-
ing provides no intrinsic advantage over following the proto-
col honest. Secondly, our techniques are specific to certain
algorithms, whereas verifiable computation enables proving
correctness of arbitrary circuits. Moreover, verifiable com-
putation can be and have been applied in our setting, since
recent schemes have constant verification effort [43]. How-
ever, such schemes impose impractically high overheads on
provers and require expensive inial key setup between all
miners in the protocol.

Since the rise of Bitcoin, a new line of work on repurposing
the blockchain for other applications has been initiated [19,
21, 16, 20]. For example, in [19, 21], Kumaresan et al. stud-
ied how to run several applications, including verifiable com-
putation, on Bitcoin. Their technique is fairly complicated
and relies on the assumption that all the computations done
by consensus protocol will be correct. As we have shown,
with expressive scripting languages (c.f. Ethereum), one can
achieve what these previous works have done in Bitcoin with
a single concise smart contract. However, as we pointed
out in this paper, miners have incentive to deviate from the
honest protocol in a new Turing-complete cryptocurrency.
Thus, techniques used in [20, 21] may not guarantee the
correctness of the computation on some ε-consensus com-
puter having small ε. Furthermore, our technique differs
from theirs by leveraging a new cryptocurrency design and

adapting property testing techniques within the verifiable
computation domain.

8. CONCLUSION
In this paper, we introduce a verifier’s dilemma demon-

strating that honest miners are vulnerable to attacks in cryp-
tocurrencies where verifying transactions per block requires
significant computational resources. We formalize the se-
curity security model to study the incentive structure and
attacks which affect the correctness of computations per-
formed on a consensus computer. Finally, we discuss how
to implement our ε-consensus computer in Ethereum with
various trade-offs in latency and accuracy. We consider it
an interesting open problem to determine whether one can
incentivize robust computations to execute correctly on a
consensus computer by modifying its underlying consensus
mechanism.
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APPENDIX
A. DISCUSSION ON GASLIMIT IN ETHEREUM

We explain why gasLimit does not help Ethereum prevent
our DoS attack completely. The current design allows the
miners to set the gasLimit for the next block once they find
a block. However, the gasLimit of the next block cannot
vary more than a fraction (2−10) of the current gasLimit.
We learned this from our private communication with the
founder of Ethereum. The constraint seems to mitigate our
attack, however, we explain why the gasLimit can reach
to a high value that makes the resource exhaustion attack
feasible.

In practice, miners have different views of what gasLimit
value is acceptable because of various reasons. For instance,
one may be willing to always verify a new block regardless
of its gasLimit value because they have more resources or
they simply value the advantages of having a high gasLimit

value than the disadvantages. Thus, each miner will decide
to only reduce block’s gasLimit at a different threshold Gi.
Suppose that our DoS attack requires gasLimit to be at
least G0 to be practical. In a scenario where more than 50%
of computational power consider G0 is still within their Gi,
all miners are under our denial-of-service attack. On the
other hand, if the majority of miners have their Gi less than
G0, gasLimit can successfully block our attack.

For the completeness of our argument, rational users in
the network have the following incentives to extend gasLimit

value.

• Higher gasLimit value means higher transaction fee
that miners can collect from a block.

• A block with a higher gasLimit can support more ap-
plications, specifically the application that requires more
gas to run. Thus, the value of the network and its un-
derlying currency is more valuable, which benefits di-
rectly the miners.

• As more and more applications are built on top of
Ethereum, the gasLimit has to be increased correspond-
ingly in order to improve the throughput of the network
to support those applications. It is not practical to wait
for, say, ten blocks to see a transaction gets included in
the blockchain due to the small throughput.

There are also reasons that miners decide to reduce gasLimit.
The Ethereum founder mentions about those reasons in a
public post which discusses our work [44].

• Miners realize that high gasLimit value may cause DoS
attack as we described.

• Transaction fee is increased because low gasLimit means
only a limited number of transactions can be included
in a block.

In conclusion, gasLimit does not completely block our
DoS attack, i.e., resource exhaustion attack, in Ethereum.
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