
1

Square root computation over even extension

fields

Gora Adj 1 and Francisco Rodrı́guez-Henrı́quez2

1 ISFA, Université Claude Bernard Lyon 1, France
2 Computer Science Department, CINVESTAV-IPN, México

Abstract

This paper presents a comprehensive study of the computation of square roots over finite extension

fields. We propose two novel algorithms for computing square roots over even field extensions of the

form Fq2 , with q = pn, p an odd prime and n ≥ 1. Both algorithms have an associate computational

cost roughly equivalent to one exponentiation in Fq2 . The first algorithm is devoted to the case when

q ≡ 1 mod 4, whereas the second one handles the case when q ≡ 3 mod 4. Numerical comparisons

show that the two algorithms presented in this paper are competitive and in some cases more efficient

than the square root methods previously known.

keyword: Modular square root, finite field arithmetic.

I. INTRODUCTION

Taking square roots over finite fields is a classical number theoretical problem that has been

addressed by mathematicians across the centuries. In modern times, the computation of modular

square roots is especially relevant for elliptic curve cryptosystems, where hashing an arbitrary

message to a random point that belongs to a given elliptic curve [9], point compression [24], [17],

[5] and point counting over elliptic curves [26], [1], are some of its most relevant cryptographic

applications. Quite often, the above applications require computing square roots in finite exten-

sion fields. In particular, a good number of pairing-based protocols defined over popular choices

of pairing-friendly elliptic curves such as the Barreto-Naehrig (BN), the Kachisa-Schaefer-Scott

or the Barreto-Lynn-Scott elliptic curves, require computing square roots over either quadratic

or cubic extension fields [4], [18], [14].

DRAFT

2

Let q be a positive power of a large odd prime p, i.e., q = pm, with m ≥ 1. It is known that

q uniquely defines a finite field denoted as Fq. The problem of computing a field square root

of any arbitrary element a ∈ Fq consists of finding a second element b ∈ Fq such that b2 = a.

According to the Euler criterion, also known as the quadratic residuosity test, the square root

of an element a ∈ F∗q exists if and only if a
q−1
2 = 1. We denote by χq(a) the value of a

q−1
2 . If

χq(a) = 1, we say that the element a is a quadratic residue (QR) in Fq. It is known that in F∗q
there exist exactly (q − 1)/2 quadratic residues.

Two classical, non-deterministic techniques for computing square roots in prime extension

fields are the Tonelli-Shanks [30] and the Cipolla-Lehmer [11] algorithms.1 However, finding a

square root of a field element a can be achieved more easily by using specialized methods as it

is briefly discussed next.

In the case that q ≡ 3 (mod 4), one can simply use a specialized version of the Tonelli-Shanks

procedure, the Shanks algorithm, where the square root of a quadratic residue a ∈ Fq, can be

computed via one single exponentiation as, b = a
q+1
4 . On the other hand, no simple and general

algorithm for the class q ≡ 1 (mod 4) is known. However, fast algorithms for computing a

square root in Fq when q ≡ 5 (mod 8) or q ≡ 9 (mod 16) have been reported.

For the case when q ≡ 5 (mod 8), Atkin developed in 1992 an efficient and deterministic

square root algorithm that is able to find the square root of a QR using only one field exponenti-

ation plus a few multiplications in Fq [1]. A modification of the Atkin’s algorithm was presented

by Müller in [25], that allows one to compute square roots in Fq when q ≡ 9 (mod 16), at the

price of two exponentiations. By exploiting a regular structure of the exponent (q− 9)/16 when

written in base p, authors in [22], were able to simplify the overall cost of the Müller procedure

to only one exponentiation for half of the QRs in Fq, and two exponentiations for the other half.

It is worth mentioning that in the case when q ≡ 1 (mod 16), no specialized algorithm is

known. Hence, for this class of extension fields one is forced to resort to the aforementioned

classical methods, namely, the Tonelli-Shanks algorithm or a modified version of the Cipolla-

Lehmer algorithm presented by Müller in [25].

Square root computation of extension fields Fpm , with m odd. Several authors have analyzed

1In this paper, an algorithm is said to be non-deterministic if for a given input, the number of steps to compute the output

varies among different runs.

DRAFT

3

the square root problem in odd finite extension fields. In [3], Barreto et al. presented an efficient

algorithm that can compute square roots for fields of this form, whenever p ≡ 3 mod 4 or

p ≡ 5 mod 8. The latter case can be seen as a variant of the Atkin method mentioned above.

The main idea of the Barreto et al. procedure is to rewrite the exponents required for computing

the square root in base p. Then, those exponentiation operations can be calculated efficiently by

exploiting a recursive procedure that is essentially the same as the one used in the Itoh-Tsujii

inversion method [29]. This recursive procedure takes advantage of the fact that the Frobenius

map in characteristic p, which consists of the exponentiation of a field element a to the p-th

power, is a simple operation that can be computed at an inexpensive cost or even at no cost if

the field elements are represented in normal basis [6].

The technique in [3] was systematically applied by Han-Choi-Kim in [15] for all the special-

ized methods when p ≡ 3 (mod 4), 5 (mod 8) or 9 (mod 16). Authors in [15] also improved the

general Tonelli-Shanks method that is normally one of the best choices for tackling the difficult

case when p ≡ 1 (mod 16). Let us write pm − 1 as, pm − 1 = 2s · t, where s is a positive

integer and t an odd number. Then, in order to compute the square root of an arbitrary QR

a ∈ Fq, the single most expensive operation that the Tonelli-Shanks procedure performs, is the

exponentiation a
t−1
2 . As it was shown in [15], this operation can be considerably sped up by

once again exploiting the idea of rewriting the exponent (t− 1)/2 in base p.

Square root computation of extension fields Fpm , with m even. Relatively less work has

been reported for even extension fields. Finding square roots for these fields can sometimes be

achieved by descending some of the required computations in Fpm to proper subfields of the

form Fpi , with i ≥ 1 and i|m. In this context, authors in [19], [20], [32] used a Tonelli-Shanks

based approach in order to have most of the computations reduced to proper subfields of Fpm .

More recently, authors in [12] presented an algorithm that takes roots over Fpm by descending the

computation until the base field Fp using the trace function. The complexity analysis presented

in [12] is asymptotic.

Scott adapted in [27] the complex square root formula presented in [13] to the computation

of square roots in quadratic extension fields of the form Fq2 , q = pn. The computational cost of

this algorithm is of just two square roots, one quadratic residuosity test and one field inversion,

where all these operations are performed over Fq. As it will be discussed in the rest of this paper,

the complex method formula ranks among the most efficient methods for computing square roots

DRAFT

4

over even extension fields.

Contributions of this paper. As a first contribution, we present a procedure that can compute

χq(a), with q = pm at the cost of several Frobenius exponentiations over Fq plus the computation

of the Legendre symbol in the base field Fp, which is more efficient than the recursive algorithm

proposed by Bach and Huber in [2]. Furthermore, a general review of the classical square root

algorithms over finite extension fields Fq is provided.

In the case of field extensions Fpm with m odd, we revisit efficient formulations of several

square root algorithms where the quadratic residuosity test of the input operand is interleaved

in such a manner that only some constant number of multiplications are added to the overall

algorithm computational cost.2 A detailed complexity analysis of all the reviewed algorithms is

also given. In particular and to the best of our knowledge, the complexity analysis of Algorithm 7

that corresponds to the Müller procedure for the subclass q ≡ 1 (mod 16), has not been reported

before in the open literature.

Furthermore, we propose two new algorithms that given a QR a ∈ Fq2 , with q = pn,

computes a square root of a. These two algorithms are complementary in the sense that they

cover separately the two congruence classes that odd primes define, namely, q ≡ 1 (mod 4) and

q ≡ 3 (mod 4).

For the class q ≡ 3 (mod 4), we present a deterministic procedure that in some sense can

be seen as a generalized Shanks algorithm for finite fields with even extension degrees. In this

case the proposed algorithm computes a square root by performing two exponentiations, each

of them with associate exponents of bit-length N, with N = log2(q).

For the class q ≡ 1 (mod 4), one could compute the square root of a QR a ∈ Fq2 by directly

working in that extension field. In contrast, our second proposed algorithm computes the square

root by performing first one exponentiation in Fq2 , with an exponent of length of about N bits,

followed by the computation of one square root in the subfield Fq.

Our experiments show that the two square roots algorithms proposed in this paper are com-

petitive when compared against the complex method of [27], and the Tonelli-Shanks and the

Müller’s procedures. Fig. 1 shows a taxonomy of efficient algorithms that compute the square

root over Fpm , with p an odd prime and m ≥ 1.

2With the only exception of Algorithm 7 that reproduces one of the procedures that Müller introduced in [25].

DRAFT

5

√
· ∈ Fpm

p an odd prime

m even

p
m
2 ≡ 1 mod 4

New Alg. 10

Complex

Alg. 8

p
m
2 ≡ 3 mod 4

New Alg. 9

m odd

p ≡ 1 mod 4

p ≡ 1 mod 8

p ≡ 1 mod 16

Müller’s Alg. 7 or

Tonelli-Shanks Alg. 5

p ≡ 9 mod 16

Kong et al. Alg. 4

p ≡ 5 mod 8

Atkin’s Alg. 3

p ≡ 3 mod 4

Shanks’ Alg. 2

Figure 1. A taxonomy of efficient algorithms that compute the square root over Fpm , p an odd prime and m ≥ 1

The rest of this paper is organized as follows. In Section II we give the notation and basic defi-

nitions of the arithmetic operations that will be used for evaluating the computational complexities

of the square root algorithms studied in this paper. Then, in Section III an efficient method

for computing quadratic residuosity tests over field extensions is presented. Section IV gives

a comprehensive review of known algorithms over extension fields Fpm with m odd, whereas

Section V studies the computation of square roots over extension fields Fpm with m even. In

Section VI, a comparison of our algorithms against previously known methods by choosing BN

curve primes [5] and NIST recommended primes for elliptic curve cryptography [17] is given.

Finally, some conclusion remarks are drawn in Section VII.

DRAFT

6

II. PRELIMINARIES

Throughout this paper, most of the described algorithms have both precomputation and compu-

tation phases. However, as it is customary when evaluating the complexity of a given algorithm,

we will not consider the precomputation effort and will give only the costs associated to the

computation phase.

In a finite field Fq, the square-and-multiply exponentiation method (also known as the binary

exponentiation method) is a standard strategy for computing field exponentiations of the form

as, where the exponent s is a positive integer, smaller than the order of the multiplicative

group. In average, the binary strategy requires a total of blog2(s)c squarings and Hw(s) − 1

field multiplications, where Hw(s) is the Hamming weight of s. In the rest of this paper it

will be assumed that the average Hamming weight of a random odd integer s is given as [23],
1
2
blog2(s)c+ 3

2
.

For a quadratic non-residue (QNR) element β ∈ Fq, the binomial f(y) = y2−β is irreducible

over Fq[y], which means that the quadratic extension Fq2 of the base field is isomorphic to

Fq[y]/ (f(y)). A field element a ∈ Fq2 can be represented as a = a0 + a1y, with a0, a1 ∈ Fq. A

multiplication and a squaring in Fq2 can be computed at a cost of three and two multiplications in

Fq, and one and two multiplications by a constant in Fq, respectively.3 Likewise, a multiplication

between an element of Fq and an element of Fq2 amounts for two multiplications in Fq. Since

(a0 +a1y)−1 = (a0−a1y)/(a20 +β ·a21), computing the inverse of a ∈ Fq2 requires one inversion

and at most 5 multiplications in Fq (in fact, if β = −1 only 4 multiplications in Fq are required).

Applying the Frobenius operator over an arbitrary field element a is essentially free of cost since

(a0 + a1y)q = (a0 − a1y), i.e., the result of raising an element to the power q is its conjugate.

Notice also that this implies that aq+1 = a · ā = a20−β ·a21 is in Fq. Moreover, if the element a is

a QR, then a
q+1
2 also lies in Fq. We will consider that the addition operations have a negligible

cost, and thus they will be ignored from our estimations.

The application of the Frobenius operator over a field element a ∈ Fqk , with k > 2,

can be computed efficiently for reasonable choices of irreducible polynomials involved in the

construction of the associated field towering [7], [21]. In this scenario the computation of aq can

3using a multiplication à la Karatsuba and the so-called complex method, respectively. [16], [10].

DRAFT

7

be achieved at the price of at most k − 1 field multiplications over Fq [8].4

In the remainder of this paper, Mq, Sq and Mcq will denote the cost of a multiplication,

a squaring and a multiplication by a constant in Fq, respectively. The cost of an inversion is

denoted by Iq in any given field Fq. Moreover, we state Fq as the cost of a Frobenius operation

ap
i
, with a ∈ Fq, q = pm and 1 ≤ i < m. Lucas(k) will denote the complexity of computing the

k-th element of a Lucas sequence. Finally, we denote by SQRTq, the complexity of computing

a square root in the field Fq by using the most efficient method for that extension field.

III. A REMARK ON THE COMPUTATION OF QUADRATIC RESIDUOSITY TEST OVER FIELD

EXTENSIONS

In [2], Bach and Huber showed that the Legendre symbol can be used for computing the

quadratic character of an extension field element a ∈ F∗q, with q = pm, p an odd prime and

m > 1. By recursively invoking the law of quadratic reciprocity, the authors proved that the

asymptotic cost of this method is of O(log q)2 bit operations. Here, we present an alternative

formulation that computes the quadratic residue test by descending its computation to the base

field Fp plus the evaluation of several Frobenius operations. This procedure is considerably

more efficient than the algorithm of [2], provided that the Frobenius operator can be computed

inexpensively.

As it was mentioned in the introduction, the quadratic residuosity test on an element a ∈ F∗q ,

with q = pm can be computed via the exponentiation, a
q−1
2 . For m ≥ 1, the following factorization

of the exponent,
q − 1

2
=
p− 1

2

m−1∑
i=0

pi, (1)

can be used to descend the exponentiation a
q−1
2 to one quadratic residuosity test in the base

field Fp after applying the addition chain exponentiation method that was first described in [6].

Indeed, the value b = a
∑m−1
i=0 pi is nothing more than the norm of a in the sub-field Fp of Fq,

which implies that b ∈ Fp. For the sake of efficiency, notice that after computing b, instead

of performing the exponentiation, a
q−1
2 = b

p−1
2 , the customary Legendre symbol computation

on b ∈ Fp can be carried out as described in Alg. 1, where the function Ck,c(a) is defined as

4We stress that if normal basis representation is used then the computation of the Frobenius operator is free of cost.

DRAFT

8

Ck,c(a) = a1+s+s2+···+sk−1 , for s = pc and c, k ≥ 1. The cost of computing b in polynomial basis

is estimated in Appendix A as,

3

2
[blog2mc+ 1] (Mq + Fq),

whereas the computation of the Legendre symbol of a non-zero base field element b has a

complexity similar to that of computing the greatest common divisor of b and p [2].

Algorithm 1 Quadratic residuosity test for a ∈ Fq, q = pm,m > 1

Require: a ∈ Fq , q = pm, m > 1.

Ensure: χq(a).

1: b← Cm,1(a).

2: c← χp(b).

3: return c.

IV. SQUARE ROOTS IN ODD EXTENSION FIELDS

The algorithms for computing square roots over finite extension fields Fq where q = pm, p a

large odd prime and m > 1, can be classified into two main cases. On the one hand, we have

the class q ≡ 1 (mod 4), and on the other hand, the class q ≡ 3 (mod 4).5 We first describe the

easiest case q ≡ 3 (mod 4) before handling q ≡ 1 (mod 4) which can be much more costly in

some cases as it will be discussed at the end of this section.

A. Square roots in Fq when q ≡ 3 (mod4)

Computing the square root of an arbitrary QR a ∈ Fq, where q ≡ 3 (mod 4), can be done with

only one exponentiation, via the computation of a
q+1
4 , that can be seen as the simplest instance

of the Shanks’s method [28]. The quadratic residuosity test of an arbitrary field element a ∈ Fq

has been integrated into Algorithm 2. If a is a QR it returns its square root and false otherwise.

5In the case of odd degree, if p ≡ ±1 (mod 4) then also pm ≡ ±1 (mod 4).

DRAFT

9

Algorithm 2 Shanks’s algorithm for q ≡ 3 (mod 4)

Require: a ∈ F∗q .

Ensure: If it exists, x satisfying x2 = a, false otherwise.

1: a1 ← a
q−3
4 .

2: a0 ← a1(a1a).

3: if a0 = −1 then

4: return false.

5: end if

6: x← a1a.

7: return x.

The computational cost of Algorithm 2 is one exponentiation and two multiplications. In 2007,

Scott in [27] showed that the complexity of the exponentiation in Step 1 could be further reduced

by rewriting the exponent in base p. This was rediscovered by Han et al. [15], who factorized

the exponent (q − 3)/4 as,

q − 3

4
= α + p [pα + (3α + 2)]

(m−3)/2∑
i=0

p2i, (2)

where α = p−3
4

.

Using the factorization of the exponent (q − 3)/4 given in Eq. (2), it can be shown that the

average complexity of Algorithm 2 when a is a square, is given as (see Appendix B for details),[
1

2
blog2(p)c+

3

2
blog2(m)c+

5

2

]
Mq + [blog2(p)c − 2]Sq

+

[
3

2
blog2(m)c+ 2

]
Fq.

B. Square roots in Fq when q ≡ 1 (mod4)

For this class, it is customary to consider the sub-congruences modulo 8 or modulo 16. Indeed,

despite the fact that there is no simple and general algorithm for q ≡ 1 (mod 4), fast algorithms

for computing a square root in Fq when q ≡ 5 (mod 8) or q ≡ 9 (mod 16) are known.

1) Atkin’s algorithm: When q is congruent to 5 (mod 8), Atkin [1] developed an efficient

method to compute a square root of a QR in Fq by performing one exponentiation and a constant

number of multiplications.

DRAFT

10

Algorithm 3 Atkin algorithm for q ≡ 5 (mod 8)

Require: a ∈ F∗q .

Ensure: If it exists, x satisfying x2 = a, false otherwise.

PRECOMPUTATION

1: t← 2
q−5
8 .

COMPUTATION

1: a1 ← a
q−5
8 .

2: a0 ← (a21a)
2.

3: if a0 = −1 then

4: return false.

5: end if

6: b← ta1.

7: i← 2(ab)b.

8: x← (ab)(i− 1).

9: return x.

The computational cost of Algorithm 3 is one exponentiation, four multiplications and two

squarings in Fq. Han et al. [15] showed that the exponent (q − 5)/8 can be rewritten in base p

as,
q − 5

8
= α + p [pα + (5α + 3)]

(m−3)/2∑
i=0

p2i, (3)

where α = p−5
8

.

Using the factorization of Eq. (3), it can be shown that the average complexity of Algorithm 3

when a is a square, is giving as (see Appendix B for details),[
1

2
blog2(p)c+

3

2
blog2(m)c+ 3

]
Mq + blog2(p)cSq

+

[
3

2
blog2(m)c+ 2

]
Fq.

2) Generalized Atkin’s algorithm: The Atkin’s method was generalized at first by Müller [25]

for the case q ≡ 9 (mod 16). Müller showed that for this case the square root computation for

a QR can be achieved at a cost of two exponentiations in Fq. Later, Kong et al. [22] further

improve that result by presenting a procedure that required only one exponentiation for half of the

squares in Fq, and two exponentiations for the remainder half. Nonetheless, by pre-computing

some values, one can take a square root at the cost of only one exponentiation as shown in

Algorithm 4.

DRAFT

11

Algorithm 4 Kong et al. algorithm for q ≡ 9 (mod 16)

Require: a ∈ F∗q .

Ensure: If it exists, x satisfying x2 = a, false otherwise.

PRECOMPUTATION

1: c0 ← 1

2: while c0 = 1 do

3: Select randomly c ∈ F∗q .

4: c0 ← χq(c).

5: end while

6: d← c
q−9
8 ,

7: e← c2, t← 2
q−9
16 .

COMPUTATION

1: a1 ← a
q−9
16 .

2: a0 ← (a21a)
4.

3: if a0 = −1 then

4: return false.

5: end if

6: b← ta1.

7: i← 2(ab)b.

8: r ← i2.

9: if r = −1 then

10: x← (ab)(i− 1).

11: else

12: u← bd.

13: i← 2u2ea.

14: x← uca(i− 1).

15: end if

16: return x.

The computational cost of Algorithm 4 is one exponentiation, six and a half multiplications,

and four and a half squarings in Fq. For this case, the exponent (q − 9)/16 can be rewritten in

base p as,
q − 9

16
= α + p [pα + (9α + 5)]

(m−3)/2∑
i=0

p2i, (4)

where α = p−9
16

.

Using the factorization of Eq. (4), it can be shown that the average complexity of Algorithm 4

when a is a square, is given as (see Appendix B for details),[
1

2
blog2(p)c+

3

2
blog2(m)c+ 10

]
Mq

+

[
blog2(p)c+

5

2

]
Sq +

[
3

2
blog2(m)c+ 2

]
Fq.

3) General square root algorithms in Fq for q ≡ 1 (mod 16): This sub-case is certainly the

most costly, since there is no specialized algorithm to tackle it. The Tonelli-Shanks’s [28], [30]

and the Cipolla-Lehmer’s [11] algorithms are the two general non-deterministic algorithms from

which most of the methods for square root extraction are derived. In this subsection the Tonelli-

Shank’s algorithm and an improved Cipolla-Lehmer algorithm by Müller [25] are described. For

the latter, we include a detailed analysis of its computational complexity that to the best of our

knowledge, has not been reported before in the open literature.

DRAFT

12

Algorithm 5 Tonelli-Shanks Algorithm

Require: a ∈ F∗q
Ensure: If it exists, x satisfying x2 = a, false otherwise.

PRECOMPUTATION

1: Write q − 1 = 2st, where t is odd.

2: c0 ← 1.

3: while c0 = 1 do

4: Select randomly c ∈ F∗q .

5: z ← ct.

6: c0 ← c2
s−1

.

7: end while

COMPUTATION

1: ω ← a
t−1
2 .

2: a0 ← (ω2a)2
s−1

.

3: if a0 = −1 then

4: return false.

5: end if

6: v ← s, x← aω, b← xω.

7: while b 6= 1 do

8: Find least integer k ≥ 0 such that b2
k

= 1.

9: ω ← z2
v−k−1

, z ← ω2, b← bz, x← xω, v ← k.

10: end while

11: return x.

Algorithm 5 presents a variant of the Tonelli-Shanks procedure where the quadratic test of

an arbitrary field element a ∈ Fq has been incorporated to the algorithm. It is noticed that the

computational complexity of Algorithm 5 varies depending on whether the input is or not a

quadratic residue in Fq. By taking into account the average contribution of QR and QNR inputs,

and using the complexity analysis given in [23] for the classical Tonelli-Shanks algorithm, it is

not difficult to see that the average computational cost of Algorithm 5 is given as,

1

2

[
blog2(q)c+ 4

]
Mq +

[
blog2(q)c+

1

8

(
s2 + 3s− 16

)
+

1

2s

]
Sq. (5)

However, rewriting the exponent (t− 1)/2 in base p as,

t− 1

2
= α + p

[
α(p+ 1) + 1 + 2s−1t

] (m−3)/2∑
i=0

p2i,

where q − 1 = 2st, p− 1 = 2sx, and α = x−1
2

, it can be shown that the average complexity of

Algorithm 5 for any arbitrary field element a is given as (see Appendix B for details),

[
1

2
blog2(p)c+

3

2
blog2(m)c+

s

2
+ 5

]
Mq

+

[
blog2(p)c+

1

8
(s2 + 11s− 16) +

1

2s

]
Sq

+

[
3

2
blog2(m)c+ 2

]
Fq.

DRAFT

13

Algorithm 6 Lucas sequence evaluation

Require: α ∈ Fq and k ≥ 2.

Ensure: Vk(α, 1).

1: Write k =
∑l−1
j=0 bj2

j in binary form.

2: d0 ← α.

3: d1 ← α2 − 2.

4: for j from l − 2 to 1 do

5: d1−bj ← d0d1 − α, dbj ← d21−bj − 2.

6: end for

7: if b0 = 1 then v ← d0d1 − α else v ← d20 − 2.

8: return v.

As a second option for this sub-case, the improved Cipolla-Lehmer algorithm introduced

in [25], uses the Lucas sequences to compute a square root over the field Fq. Thus, we first

briefly recall the definition of the Lucas sequences and subsequently give a fast algorithm that

evaluates the k-th element of some instances of these sequences. For (α, β) ∈ Fq, the Lucas

sequence
(
Vk(α, β)

)
k≥0

is defined as,

V0 = 2, V1 = α and Vk = αVk−1 − βVk−2, for k > 1.

Algorithm 6 computes Vk(α, 1), for a given α ∈ Fq and k > 1. It can be easily verified that

to compute Vk(α, 1), this procedure requires roughly (blog2(k)c + 3
2
)Sq + (blog2(k)c + 1

2
)Mq

multiplications in Fq.

Algorithm 7 Müller’s algorithm [25]

Require: a ∈ F∗q .

Ensure: If it exists, x satisfying x2 = a, false otherwise.

1: if a = 4 then

2: return 2.

3: end if

4: t← 1.

5: a1 ← χq(at
2 − 4).

6: while a1 = 1 do

7: Select randomly u ∈ F∗q\{1}.

8: t← u.

9: if at2 − 4 = 0 then

10: return 2t−1.

11: end if

12: a1 ← χq(at
2 − 4).

13: end while

14: α← at2 − 2.

15: x← V q−1
4

(α, 1)/t.

16: a0 ← x2 − a.

17: if a0 6= 0 then

18: return false.

19: end if

20: return x.

Algorithm 7 shows essentially the same square root algorithm as it was presented in [25].

In order to assess the computational complexity of this procedure, the following two auxiliary

lemmas are presented, whose formal proofs can be found in Appendix C.

DRAFT

14

Lemma 1. In the field Fq, the number of QR a ∈ F∗q such that a− 4 is a QNR is q−1
4

.

Lemma 2. Let a ∈ F∗q be a QR, then the number of t ∈ F∗q such that at2 − 4 is a QNR is q−1
2

.

Summarizing, Lemma 1 shows that for half of the QRs in F∗q, there is no need to search for

a t in the main loop of Algorithm 7, and Lemma 2 ensures that for the remainder case, only 2

iterations in the while-loop suffice on average. Thus, the expected number of multiplications and

squarings in the cases when (a− 4)
q−1
2 = −1 and (a− 4)

q−1
2 = 1, can be estimated as follows,

• If (a − 4)
q−1
2 = −1, on average, one has to compute one exponentiation and one Lucas

sequence evaluation.

• If (a−4)
q−1
2 = 1, on average, one has to compute three exponentiations, one Lucas sequence

evaluation, one inversion, two multiplications and two squarings.

Once again, notice that the exponentiation of step 5 can be optimized by rewriting the exponent

(q − 1)/2 as,
q − 1

2
=
p− 1

2

(m−1)∑
i=0

pi,

which gives an expected computational cost of Algorithm 7 over all QRs in Fq as (see appendix

B for details),

[
blog2(q)c+

15

4
blog2(m)c+

13

4

]
Mq

+

[
blog2(q)c −

1

2

]
Sq +

[
15

4
blog2(m)c+

17

4

]
Fq

+ [blog2(p)c − 3]Mp + [2blog2(p)c − 2]Sp +
1

2
Ip

V. SQUARE ROOTS IN EVEN EXTENSION FIELDS

Even extension fields Fq2 , with q = pn and n ≥ 1, can be constructed as Fq2
∼= Fq[y]/ (y2 − β) ,

where β ∈ Fq is not a square. Unfortunately, none of the methods studied in the previous section

lead to efficient computation of square roots for even extension fields as it is briefly discussed

next.

Notice that in this scenario, the identity q2 ≡ 1 (mod 4) always holds. Moreover, it is easy

to see that the case q2 ≡ 5 (mod 8), can never occur. This automatically implies that the

DRAFT

15

Shanks and the Atkin methods studied in the previous section are both ruled out. In the case

that q2 ≡ 9 (mod 16), one can use the generalized Atkin’s algorithm by Kong et al., that

was also reviewed in the precedent section. If however, q2 = 1 (mod 16), the only remaining

classical option is to select between either the Tonelli-Shanks’s or the Müller’s non-deterministic

algorithms.

In the rest of this section, three efficient methods for computing square roots over even

extension fields will be discussed. First, a detailed analysis of the complex method described

in [27] will be given. Then, two novel algorithms for computing square roots in Fq2 will be

presented. These two algorithms are complementary in the sense that they cover separately the

two congruence classes that odd primes define, namely, q ≡ 1 (mod 4) and q ≡ 3 (mod 4). The

easiest case q ≡ 3 (mod 4) is first presented followed by the slightly more involved case where

q ≡ 1 (mod 4).

Algorithm 8 Complex method for square root computation over Fq2

Require: Irreducible binomial f(y) = y2 − β such that

Fq2 ∼= Fq[y]/
(
y2 − β

)
, β ∈ Fq,

with q = pn, a = a0 + a1y ∈ F∗q2 .

Ensure: If it exists, x = x0 + x1y ∈ Fq2 satisfying x2 = a,

false otherwise.

1: if a1 = 0 then

2: return SQRTq(a0).

3: end if

4: α← a20 − β · a21.

5: γ ← χq(α).

6: if γ = −1 then

7: return false.

8: end if

9: α← SQRTq(α).

10: δ ← a0+α
2

.

11: γ ← χq(δ).

12: if γ = −1 then

13: δ ← a0−α
2

.

14: end if

15: x0 ← SQRTq(δ).

16: x1 ← a1
2x0

.

17: x← x0 + x1y.

18: return x.

A. The complex method

Let the quadratic extension field be defined as, Fq2
∼= Fq[y]/ (y2 − β) , where β ∈ Fq, is

a QNR, with q = pn, n ≥ 1. Then, a square root x = x0 + x1y ∈ Fq2 of an arbitrary QR

a = a0 +a1y ∈ F∗q2 can be found by observing that since x2 = x0
2 + 2x0x1y+βx1

2, then x0, x1,

DRAFT

16

must satisfy the following two equationsx0
2 + βx1

2 = a0

2x0x1 = a1

Solving this system of equations for x0, and x1 yields,

x0 =

(
a0 ± (a0

2 − βa12)
1
2

2

) 1
2

(6)

x1 =
a1
2x0

Observe that a = a0+a1y, will be a QR in the quadratic extension, whenever α = a0
2−βa12 ∈ Fq

is a QR over Fq, as can be easily checked by noticing:

(a0 + a1y)
q2−1

2 =
(
(a0 + a1y)q+1

) q−1
2

= ((a0 − a1y) · (a0 + a1y))
q−1
2

=
(
a0

2 − βa12
) q−1

2

Algorithm 8 uses the complex method for computing a square root in the quadratic extension

Fq2 by calculating x = x0 + x1y according to Eq. (6). Notice that Alg 8 performs two quadratic

residuosity tests in steps 5 and 11, which can be computed efficiently by using the method

described in §III. Besides these two tests, the cost of Algorithm 8 includes the computation of

two square roots plus one field inversion over Fq.

B. A deterministic algorithm when q ≡ 3 (mod 4)

A technique to compute a square root of a QR a ∈ Fq2 is to find an element b ∈ Fq2 for

which there exists an odd integer s such that b2as = 1. In this case, a square root of a is given

by ba
s+1
2 . In order to find b and s with the above property, we proceed as follows.

Let b and s be defined as, b = (1 + a
q−1
2)

q−1
2 and s = q−1

2
. Let us consider first the case when

DRAFT

17

b 6= 0. Then, it can be easily verified that the equality b2as = 1 holds since:

b2as = (1 + a
q−1
2)(q−1)a

q−1
2

= (1 + a
q−1
2)q(1 + a

q−1
2)(−1)a

q−1
2

= (1 + a
q−1
2

q)(1 + a
q−1
2)(−1)a

q−1
2

= (a
q−1
2 + a

q−1
2

(q+1))(1 + a
q−1
2)(−1)

= (a
q−1
2 + 1)(1 + a

q−1
2)(−1)

= 1

If on the contrary b = 0, then by definition of b we have 1 + a
q−1
2 = 0 and hence a

q−1
2 = −1.

In this case x = ia
q+1
4 is a square root of a, where i =

√
−1, as it can be easily verified by

noticing that x2 = i2a
q+1
2 = i2a

q−1
2 a = (−1)(−1)a = a.

In practice the value of i can be readily found, if the quadratic field extension Fq2 has been

constructed using the binomial f(y) = y2 − β, where β ∈ Fq is not a square. In this case,

i = β
q−3
4 y, yields i2 = β

q−3
2 y2 = β

q−3
2 β = β

q−1
2 = −1, as required. However, since

p ≡ 3 (mod 4), typically β = −1 and therefore i = y.

Summarizing, the square root x of a QR a ∈ Fq2 , with q ≡ 3 (mod 4) can be found as,

x =


ia

q+1
4 if a

q−1
2 = −1,(

1 + a
q−1
2

) q−1
2
a
q+1
4 otherwise.

(7)

We remark the striking similarity that exists between the classic Shanks algorithm (see § IV)

and our method. This leads us to state that Eq. (7) can be seen as a generalization of the Shanks

algorithm for even extension fields.

Algorithm 9 Square root computation over Fq2 , with q ≡ 3 (mod 4)

Require: a ∈ F∗q2 , i ∈ Fq2 , such that i =
√
−1, with q = pn.

Ensure: If it exists, x satisfying x2 = a, false otherwise.

1: a1 ← a
q−3
4 .

2: α← a1(a1a).

3: a0 ← αqα.

4: if a0 = −1 then

5: return false.

6: end if

7: x0 ← a1a.

8: if α = −1 then

9: x← ix0.

10: else

11: b← (1 + α)
q−1
2 .

12: x← bx0.

13: end if

14: return x.

DRAFT

18

Algorithm 9 shows an efficient procedure for computing square roots from the expression

given in Eq. (7). After executing Steps 1-3 the variables α and a0 are assigned as α = a(q−1)/2

and a0 = a(q
2−1)/2, respectively. Therefore, in Steps 4-6 the quadratic residuosity test of a over

Fq2 is performed. In the case that a is not a square the algorithm returns ’false’. Otherwise, after

executing Step 7, the variable x0 is assigned as x0 = a(q+1)/4. Then, according to Eq.(7), if in

Step 8 it is determined that α = −1, the square root of a is given as x = ix0. Otherwise in Step

11, b is computed as, b =
(

1 + a
q−1
2

) q−1
2
, and the value of the square root of a is computed in

Step 12 as, x = bx0.

Algorithm 9 performs at most two exponentiations in Fq2 , in Steps 1 and 11. Additionally, in

Steps 2, 3, 7 and 12, a total of five multiplications in Fq2 are required. As we have seen in§ IV,

the exponent (q − 3)/4 of Step 1 can be written in terms of p as,

q − 3

4
= α + p [pα + (3α + 2)]

(n−3)/2∑
i=0

p2i,

where α = p−3
4

. Similarly, the exponent of (q − 1)/2 of Step 11 can be written in base p as,
q−1
2

= p−1
2

+
n−1∑
i=0

pi.

Hence, the exponentiation a
q−3
4 can be computed by performing the exponentiation a

p−3
4 ,

plus 4 multiplications, one squaring and two Frobenius over Fq2 plus one evaluation of the

sequence Cq2(
n−1
2
, 2) that can be recursively computed using Algorithm 11 of Appendix A. The

average cost of computing a
p−3
4 and Cq2(

n−1
2
, 2) is (1

2
blog2(p)c − 3

2
)Mq2 + (blog2(p)c − 2)Sq2 ,

and 3
2
blog2 nc(Mq2 + Fq2), respectively. Similarly, the exponentiation (1 + α)(q−1)/2 of Step 11

can be computed by performing the exponentiation (1 + α)(p−1)/2, plus one multiplication plus

one evaluation of the sequence Cq2(n, 1). Therefore, the overall average computational cost

associated to Algorithm 9 when a is a square is given as,

[blog2(p)c+ 3blog2 nc+ 7]Mq2 +

[2blog2(p)c − 2]Sq2 + [3blog2 nc+ 4]Fq2

C. A descending algorithm when q ≡ 1 (mod 4)

The main idea of Algorithm 10 is to descend the square root problem from Fq2 to Fq by

computing one exponentiation with a log2(q)-bit exponent plus some precomputation. Once

again, let us consider the problem of finding the square root of an arbitrary quadratic residue

DRAFT

19

a ∈ Fq2 . The approach of descending this problem from Fq2 to Fq can be achieved by the

opportunistic usage of the identity,

a = a
(
a
q−1
2

)q+1

= a
(
a
q−1
2

)q
a
q−1
2

=
(
a
q−1
2

)q
a
q+1
2 , (8)

where the first equality holds because a
q2−1

2 = 1, since a in a QR in Fq2 . Then, by taking the

square root in both sides of Eq. (8) we get,

√
a = ±

(
a
q−1
4

)q√
a
q+1
2 . (9)

Now, since
(
a
q+1
2

)q−1
= a

q2−1
2 = 1, by the Fermat’s little theorem, the element a

q+1
2 lies in

Fq. Moreover, if a
q+1
2 is a QR in Fq, then it holds that

(
a
q+1
2

) q−1
2

= 1. This implies that the

problem of finding square roots in Fq2 has been reduced to the same problem but in the sub-field

Fq, after one exponentiation with an exponent of roughly the same size of q. In the event that

a
q+1
2 is not a QR, then finding a quadratic non-residue in Fq2 (independently of the form of a)

allows us to recover easily the previous case as given in Algorithm 10.

Algorithm 10 Square root computation over Fq2 , with q ≡ 1 (mod 4)

Require: a ∈ F∗q2 , with q = pn, n ≥ 1.

Ensure: If it exists, x satisfying x2 = a, false otherwise.

PRECOMPUTATION

1: c0 ← 1.

2: while c0 = 1 do

3: Select randomly c ∈ F∗q2 .

4: c0 ← χq2(c).

5: end while

6: d← c
q−1
2 .

7: e← (dc)−1.

8: f ← (dc)2.

COMPUTATION

1: b← a
q−1
4 .

2: a0 ← (b2)qb2.

3: if a0 = −1 then

4: return false.

5: end if

6: if bqb = 1 then

7: x0 ← SQRTq(b
2a).

8: x← x0b
q .

9: else

10: x0 ← SQRTq(b
2af).

11: x← x0b
qe.

12: end if

13: return x.

DRAFT

20

Theorem 1. Algorithm 10 computes a square root of a QR a ∈ Fq2 with one exponentiation of

log2(q) bits in Fq2 and one square root computation in the field Fq.

Proof: See Appendix D

The cost of Algorithm 10 includes the computation of one field exponentiation over Fq2 , one

square root in Fq, 5 field multiplications, one squaring and two Frobenius over Fq2 . The exponent

(q−1)/4 of Step 1 can be written in base p as, q−1
4

= p−1
4

+
n−1∑
i=0

pi. Thus, a(q−1)/4 can be computed

by performing the exponentiation a
p−1
4 , plus 1 multiplication plus one evaluation of the sequence

Cq2(n, 1). Therefore, the overall average computational cost associated to Algorithm 10 when a

is a square is given as,

SQRTq + (
1

2
blog2(p)c+

3

2
blog2mc+

11

2
)Mq2 +

(blog2(p)c − 2)Sq2 + (
3

2
blog2mc+ 3)Fq2

VI. COMPARISONS

In this section, we compare the algorithms described above for the cases where one wants to

compute square roots in Fp2 , Fp6 and Fp12 , with p an odd prime. In our experiments, two group

of primes have been considered. The first group is composed by primes congruent to 3 (mod 4),

where algorithm 9 apply. The second one considers primes p ≡ 1 (mod 4), where one can

use algorithm 10. The extensions Fp6 and Fp12 are obtained by constructing the following field

towering,

Fp ⊂ Fp3 ⊂ Fp6 ⊂ Fp12 .

In the comparisons, BN curve primes [5] and NIST recommended primes for elliptic curve

cryptography [17] were selected. These choices were taken considering that one of the main

applications of square root computation over prime extensions fields occur in both, pairing-

based and elliptic curve cryptography. It is worth mentioning that BN curves is a rich family of

elliptic curves defined over a prime field Fp, where p is parametrized as, p(u) = 36u4 + 36u3 +

24u2 + 6u + 1, with u ∈ Z. For the sake of simplicity in the following we will assume that

Mp = Sp.

In our comparisons, the quadratic extension field Fp2 was constructed as Fp2 = Fp[u]/ (u2 − β),

where β is a QNR over Fp. Hence, every element a in Fp2 can be represented as a = a0 + a1u,

DRAFT

21

Table I

NUMBER OF OPERATIONS IN Fp FOR SQUARE ROOTS IN Fq2 , q = p, p ≡ 3 (mod 4)

Parameter u = −(262 + 255 + 1) p = 2256 − 2224 + 2192 + 296 − 1 u = 263 + 29 + 28 + 26 + 24 + 23 + 1

Bit length of p 254 256 258

s: p2 − 1 = 2st, t odd 3 97 4

Algo. 9

Mp 1261 1785 1427

Mcp 1091 1271 1157

Ip 0 0 0

Complex Algo.

Mp 885 1149 972

Mcp 6 6 6

Ip 1 1 1

Tonelli-Shanks

Mp 1574 6292 1660

Mcp 1202 6999 1244

Ip 0 0 0

Müller’s Algo.

Mp 3120 3387 3245

Mcp 1521 1537 1546

Ip 1 1 1

and where the most relevant field arithmetic costs are, Mp2 = 3Mp +1Mcp, Sp2 = 2Mp +2Mcp,

Ip2 = Ip +4Mp +Mcp. Analogous arithmetic costs hold for the quadratic extensions of the cubic

and sextic extension fields of the form, Fp3 ⊂ Fp6 and Fp6 ⊂ Fp12 , respectively.

The cubic extension Fp ⊂ Fp3 is obtaining by considering a cubic non-residue ξ ∈ Fp. We

chose p ≡ 1 (mod 3) in order to have a simple way for finding cubic non-residues, since in this

case an element ξ ∈ Fp is a cubic non-residue iff ξ
p−1
3 6= 1.

Let ξ ∈ Fp be a cubic non-residue, then the polynomial X3 − ξ is irreducible over Fp so that

the quotient Fp[u]/ (u3 − ξ) can be used to build the cubic field extension Fp3 . In such as field,

an element α is represented as, α2u
2+α1u+α0u, α0, α1, α2 ∈ Fp. The above construction leads

to the following arithmetic costs over Fp3 , Mp3 = 6Mp + 2Mcp, Sp3 = 5Mp + 2Mcp, Ip3 =

Ip + 12Mp + 4Mcp.

Since the cubic non-residue ξ over Fp was also selected to be a QNR over Fp, then the

quadratic extension Fp3 ⊂ Fp6 can be constructed as, Fp6
∼= Fp3 [v]/ (v2 − u) , since the element

u is a QNR in Fp3 .

For further comparisons when p ≡ 1 (mod 4), we also consider the twelfth field extension

DRAFT

22

Table II

NUMBER OF OPERATIONS IN Fp FOR SQUARE ROOTS IN Fq2 , q = p, p ≡ 1 (mod 4)

Parameter p = 2224 − 296 + 1 u = 262 − 254 + 244 u = 263 − 249

Bit length of p 224 254 256

s: p2 − 1 = 2st, t odd 97 46 51

Algo. 10

Mp 1975 1625 1782

Mcp 577 591 603

Ip 1 0 0

Complex Algo.

Mp 2653 2079 2357

Mcp 7 5 5

Ip 3 1 1

Tonelli-Shanks

Mp 6705 2934 3199

Mcp 6065 2402 2669

Ip 0 0 0

Müller’s Algo.

Mp 2743 3197 3254

Mcp 1342 1521 1545

Ip 1 1 1

Fp12 . Notice that the element v is a QNR in Fp6 . Hence, Fp12 can be seen as the quadratic

extension Fq[v]/ (v2 − u).

Tables I-IV present our experimental results in terms of the number of general field multipli-

cations, multiplications by a constant and inversions in Fp, for different choices of odd primes

p.6 For the case p ≡ 3 mod 4, it can be seen from Tables I and III that the complex method

is the most efficient procedure followed by Algorithm 9. In the case when p ≡ 3 mod 4, it can

be seen from Tables II and IV that the complex method and Algorithm 10 are the two most

efficient solutions. All these three algorithms are considerable more efficient than the classical

Tonelli-Shanks and Müller’s procedures. In a scenario where the multiplication by constants is

negligible (for example when the irreducible binomials that were used to build the extension

field has a constant of value ±1 and/or a small power of two), then Algorithm 10 outperforms

the complex method in some scenarios.

6The corresponding Maple and magma scripts can be downloaded at: http://delta.cs.cinvestav.mx/∼francisco/codigo.html.

DRAFT

23

Table III

NUMBER OF OPERATIONS IN Fp FOR SQUARE ROOTS IN Fq2 , q = p3 , p ≡ 3 (mod 4)

Parameter u = −(262 + 255 + 1) p = 2256 − 2224 + 2192 + 296 − 1 u = 263 + 29 + 28 + 26 + 24 + 23 + 1

Bit length of p 254 256 258

s: p6 − 1 = 2st, t odd 3 97 4

Algo. 9

Mp 7686 10830 8682

Mcp 3693 4921 4091

Ip 0 0 0

Complex Algo.

Mp 3698 4926 4096

Mcp 1229 1589 1345

Ip 1 1 1

Tonelli-Shanks

Mp 31993 62886 32368

Mcp 14469 29715 14650

Ip 0 0 0

Müller’s Algo.

Mp 49299 47032 47033

Mcp 19838 20054 20144

Ip 1 1 1

VII. CONCLUSION

In this paper the computation of square roots over extension fields of the form Fq2 , with q = pn,

p an odd prime and n ≥ 1, was studied, including two novel proposals for the cases q ≡ 1 mod 4

(Algorithm 9) and q ≡ 3 mod 4 (Algorithm 10). From the complexity analysis of these algorithms

and corresponding experimental results, we conclude that the complex method of [27] is the most

efficient option in the case when q ≡ 3 mod 4. For the case when q ≡ 1 mod 4, in some cases,

Algorithm 10 is the most efficient approach closely followed by the complex method.

VIII. ACKNOWLEDGMENTS

The authors would like to thank Nareli Cruz-Cortés, Jérémie Detrey, Pierrick Gaudry and

Paul Zimmermann for their insightful comments and suggestions for improving this paper. Both

authors acknowledge partial support from the CONACyT project 132073.

REFERENCES

[1] A. Atkin. Probabilistic primality testing, summary by F. Morain. Research Report 1779, INRIA, pages 159–163, 1992.

DRAFT

24

Table IV

NUMBER OF OPERATIONS IN Fp FOR SQUARE ROOTS IN Fq2 , q = p6 , p ≡ 1 (mod 4)

Parameter p = 2224 − 296 + 1 u = 262 − 254 + 244 u = 263 − 249

Bit length of p 224 254 256

s: p12 − 1 = 2st, t odd 98 47 52

Algo. 10

Mp 28487 23203 24262

Mcp 11665 10158 10586

Ip 1 0 0

Complex Algo.

Mp 34279 20436 23293

Mcp 11045 7559 8676

Ip 7 3 3

Tonelli-Shanks

Mp 265861 213111 222382

Mcp 115155 91636 95669

Ip 0 0 0

Müller’s Algo.

Mp 243036 274681 278824

Mcp 102438 115789 117569

Ip 1 1 1

[2] E. Bach and K. Huber. Note on taking square-roots modulo N . IEEE Transactions on Information Theory, 45(2):807–809,

1999.

[3] P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott. Efficient algorithms for pairing-based cryptosystems. In M. Yung,

editor, Advances in Cryptology - CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages 354–368.

Springer, 2002.

[4] P. S. L. M. Barreto, B. Lynn, and M. Scott. Constructing elliptic curves with prescribed embedding degrees. In S. Cimato,

C. Galdi, and G. Persiano, editors, Security in Communication Networks, Third International Conference, SCN 2002,

volume 2576 of Lecture Notes in Computer Science, pages 257–267. Springer, 2003.

[5] P. S. L. M. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order. In B. Preneel and S. E. Tavares,

editors, Selected Areas in Cryptography SAC 2005, volume 3897 of Lecture Notes in Computer Science, pages 319–331.

Springer, 2005.

[6] P. S. L. M. Barreto and J. F. Voloch. Efficient computation of roots in finite fields. Des. Codes Cryptography, 39(2):275–280,

2006.

[7] N. Benger and M. Scott. Constructing tower extensions of finite fields for implementation of pairing-based cryptography.

In M. A. Hasan and T. Helleseth, editors, Arithmetic of Finite Fields, Third International Workshop, WAIFI 2010, volume

6087 of Lecture Notes in Computer Science, pages 180–195. Springer, 2010.

[8] J.-L. Beuchat, J. E. González-Dı́az, S. Mitsunari, E. Okamoto, F. Rodrı́guez-Henrı́quez, and T. Teruya. High-speed software

implementation of the optimal ate pairing over Barreto-Naehrig curves. In M. Joye, A. Miyaji, and A. Otsuka, editors,

Pairing-Based Cryptography - Pairing 2010, volume 6487 of Lecture Notes in Computer Science, pages 21–39. Springer,

DRAFT

25

2010.

[9] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In C. Boyd, editor, Advances in Cryptology

– ASIACRYPT 2001, number 2248 in Lecture Notes in Computer Science, pages 514–532. Springer, 2001.

[10] S. Chatterjee, D. Hankerson, E. Knapp, and A. Menezes. Comparing two pairing-based aggregate signature schemes. Des.

Codes Cryptography, 55(2):141–167, 2010.

[11] M. Cipolla. Un metodo per la risoluzione della congruenza di secondo grado. Rend. Accad. Sci. Fis. Mat. Napoli, vol.

9:154–163, 1903.

[12] J. Doliskani and É. Schost. Taking roots over high extensions of finite fields. CoRR, abs/1110.4350, 2011.

[13] P. Friedland. Algorithm 312: Absolute value and square root of a complex number. Commun. ACM, 10(10):665–, Oct.

1967.

[14] C. C. F. P. Geovandro, M. A. S. Jr., M. Naehrig, and P. S. L. M. Barreto. A family of implementation-friendly BN elliptic

curves. Journal of Systems and Software, 84(8):1319–1326, 2011.

[15] D.-H. Han, D. Choi, and H. Kim. Improved computation of square roots in specific finite fields. IEEE Transaction on

Computers, vol. 58, No. 2:188–196, 2009.

[16] D. Hankerson, A. Menezes, and M. Scott. Software implementation of pairings. In M. Joye and G. Neven, editors,

Identity-based Cryptography, Cryptology and Information Security Series, chapter 12, pages 188–206. IOS Press, 2009.

[17] IEEE. IEEE P1363-2000 draft standard for traditional public-key cryptography, may 2006. available at: http://grouper.

ieee.org/groups/1363/tradPK/index.html.

[18] E. J. Kachisa, E. F. Schaefer, and M. Scott. Constructing Brezing-Weng pairing-friendly elliptic curves using elements in

the cyclotomic field. In S. D. Galbraith and K. G. Paterson, editors, Pairing-Based Cryptography - Pairing 2008, volume

5209 of Lecture Notes in Computer Science, pages 126–135. Springer, 2008.

[19] H. Kato, Y. Nogami, and Y. Morikawa. A high-speed square root algorithm for extension fields. Memoirs of the Faculty

of Engineering, Okayama University, vol. 43:99–107, 2009.

[20] H. Katou, F. Wang, Y. Nogami, and Y. Morikawa. A high-speed square root algorithm in extension fields. In M. S.

Rhee and B. Lee, editors, Information Security and Cryptology - ICISC 2006, volume 4296 of Lecture Notes in Computer

Science, pages 94–106. Springer, 2006.

[21] N. Koblitz and A. Menezes. Pairing-based cryptography at high security levels. In N. P. Smart, editor, Cryptography and

Coding, 10th IMA International Conference, volume 3796 of Lecture Notes in Computer Science, pages 13–36. Springer,

2005.

[22] F. Kong, Z. Cai, J. Yu, and D. Li. Improved generalized Atkin algorithm for computing square roots in finite fields.

Information Processing Letters, vol. 98, no. 1:1–5, 2006.

[23] S. Lindhurst. An analysis of Shanks’s algorithm for computing square roots in finite fields. CRM Proc. and Lecture Notes,

Vol. 19:231–242, 1999.

[24] V. S. Miller. Use of elliptic curves in cryptography. In H. C. Williams, editor, Advances in Cryptology - CRYPTO ’85,

volume 218 of Lecture Notes in Computer Science, pages 417–426. Springer, 1985.

[25] S. Müller. On the computation of square roots in finite fields. J. Design, Codes and Cryptography, vol. 31:301–312, 2004.

[26] R. Schoof. Elliptic curves over finite fields and the computation of square roots mod p. Mathematics of Computation,

Vol. 44:483–494, April 1985.

[27] M. Scott. Implementing cryptographic pairings over Barreto-Naehrig curves. In T. Takagi, T. Okamoto, E. Okamoto, and

DRAFT

26

T. Okamoto, editors, Pairing-Based Cryptography - Pairing 2007, First International Conference, volume 4575 of Lecture

Notes in Computer Science, pages 177–196. Springer, 2007.

[28] D. Shanks. Five number-theoretic algorithms. Proceedings of the second Manitoba conference on numerical mathematics,

pages 51–70, 1972.

[29] O. T. T. Itoh and S. Tsujii. A fast algorithm for computing multiplicative inverses in GF(2m) using normal bases.

Information and Computation, Vol. 78:171–177, 1988.

[30] A. Tonelli. Bemerkung uber die auflosung quadratischer congruenzen. Götinger Nachrichten, pages 344–346, 1891.

[31] G. Tornarı́a. Square roots modulo p. In S. Rajsbaum, editor, LATIN 2002: Theoretical Informatics, volume 2286 of Lecture

Notes in Computer Science, pages 430–434. Springer, 2002.

[32] F. Wang, Y. Nogami, and Y. Morikawa. An efficient square root computation in finite fields GF(p2
d

). IEICE Transactions,

88-A(10):2792–2799, 2005.

DRAFT

27

APPENDIX A: EVALUATION OF Cq(k, c)

Algorithm 11 Computing the sequence Ck,c(a) = a1+s+s2+···+sk−1 , with s = pc, 1 ≤ c < m

Require: a ∈ Fq , q = pm, s = pc, 1 ≤ c < m, k.

Ensure: Ck,s(a) = a1+s+s
2+···+sk

1: if k = 0 then

2: return a.

3: end if

4: if k ≡ 1 mod 2 then

5: n← (k − 1)/2.

6: C ← Cn,c(a)

7: C ← C · Csn+1

8: else

9: n← k/2.

10: C ← Cn−1,c(a)

11: C ←
(
C · Csn

)s
· a

12: end if

13: return C.

Let a ∈ Fq and recall the notation Ck,c(a) = a1+s+s2+···+sk−1 , with s = pc, and c, k ≥ 1.

Let Cq(k, c) denote the complexity cost of computing that Frobenius exponentiation. Then, we

have [7]:

Ck,c(a) =

Cn,c(a)(Cn,c(a))s
n if k = 2n,(

Cn,c(a) (Cn,c(a))s
n
)s
a if k = 2n+ 1.

(10)

Algorithm 11 computes Ck,c(a) by applying Eq. (10) recursively. It can be seen that the

computational cost of Algorithm 11 is either one multiplication and one Frobenius operator

over Fq, if k is even; or two multiplications and two Frobenius operators over Fq, if k is odd.

Furthermore, notice that Algorithm 11 invokes itself exactly blog2 kc times. Assuming that half

of these invocations correspond to n even and the other half to n odd, the overall average

complexity of Algorithm 11 for computing Ck,c(a) can be estimated as,

3

2
[blog2 kc+ 1] (Mq + Fq).

APPENDIX B: COMPLEXITY OF SQUARE ROOT ALGORITHMS FOR ODD EXTENSIONS FIELDS

SHANKS’ ALGORITHM

The computational cost of Algorithm 7 is one exponentiation, two multiplications and one

squaring. Han et al. [17] show how to rewrite the exponent (q − 3)/4 in terms of p as,

q − 3

4
= α + p [pα + (3α + 2)]

(m−3)/2∑
i=0

p2i,

DRAFT

28

where α = p−3
4

.

Hence, the exponentiation a
q−3
4 can be computed by performing an exponentiation a

p−3
4 , plus

4 multiplications, one squaring and two Frobenius over Fq plus one evaluation of the sequence

Cq(
m−1
2
, 2) that can be recursively computed using Algorithm 11. The average cost of computing

a
p−3
4 and Cq(

m−1
2
, 2) is (1

2
blog2(p)c− 3

2
)Mq+(blog2(p)c−2)Sq, and 3

2
blog2mc(Mq+Fq), respec-

tively. Therefore, the overall average computational cost associated to the Shanks Algorithm 2

when a is a square is given as,

Shanks Alg. cost =

[
1

2
blog2(p)c+

3

2
blog2(m)c+

5

2

]
Mq

+ [blog2(p)c − 1]Sq +

[
3

2
blog2(m)c+ 2

]
Fq.

ATKIN’S ALGORITHM

The computational cost of Algorithm 3 is one exponentiation, four multiplications and two

squarings in Fq. Han et al. [17] show that the exponent (q− 5)/8 can be rewritten in base p as,

q − 5

8
= α + p [pα + (5α + 3)]

(m−3)/2∑
i=0

p2i,

where α = p−5
8

. Hence, the exponentiation a
q−5
8 can be computed by performing an expo-

nentiation a
p−5
8 , plus 5 multiplications, one squaring and two Frobenius over Fq plus one

evaluation of the sequence Cq(
m−1
2
, 2) that can be recursively computed using Algorithm 11.

The average cost of computing a
p−5
8 and Cq(

m−1
2
, 2) is (1

2
blog2(p)c− 3

2
)Mq + (blog2(p)c− 3)Sq,

and 3
2
blog2mc(Mq + Fq), respectively. Therefore, the average computational cost associated to

the Atkin Algorithm 2 when a is a square is given as,

Atkin Alg. cost =

[
1

2
blog2(p)c+

3

2
blog2(m)c+ 3

]
Mq

+blog2(p)cSq +

[
3

2
blog2(m)c+ 2

]
Fq.

KONG et al. ALGORITHM

The computational cost of Algorithm 4 is one exponentiation, six and a half multiplications

and four and a half squarings in Fq. For this case, the exponent (q − 9)/16 can be rewritten in

DRAFT

29

base p as,
q − 9

16
= α + p [pα + (9α + 5)]

(m−3)/2∑
i=0

p2i,

where α = p−9
16

.

hence, the exponentiation a
q−9
16 can be computed by performing an exponentiation a

p−9
16 , plus

5 multiplications, two squarings and two Frobenius over Fq plus one evaluation of the sequence

Cq(
m−1
2
, 2) that can be recursively computed using Algorithm 11. The average cost of computing

a
p−9
16 and Cq(

m−1
2
, 2) is (1

2
blog2(p)c − 3

2
)Mq + (blog2(p)c − 4)Sq, and 3

2
(blog2mc)(Mq + Fq),

respectively. Therefore, the overall average computational cost associated to the Kong et al.

Algorithm 4 is given as,

Kong et al. Alg. cost =[
1

2
blog2(p)c+

3

2
blog2(m)c+ 10

]
Mq

+

[
blog2(p)c+

5

2

]
Sq +

[
3

2
blog2(m)c+ 2

]
Fq.

TONELLI-SHANKS ALGORITHM

The computational cost of Algorithm 5 varies depending if the input is or not a quadratic

residue in Fq. By taking into account the average contribution of QR and QNR inputs, and using

the complexity analysis given in [23] for the classical Tonelli-Shanks algorithm it can be found

that its average cost is

1

2

[
blog2(q)c+ 4

]
Mq +

[
blog2(q)c+

1

8

(
s2 + 3s− 16

)
+

1

2s

]
Sq. (11)

However, rewriting once again the exponent q − 9/16 in base p as,

t− 1

2
= α + p

[
pα + α + 2s−1x

] (m−3)/2∑
i=0

p2i,

where q − 1 = 2st, p− 1 = 2sx, with t and x odd integers, and α = x−1
2

.

Hence, the exponentiation a
t−1
2 can be computed by performing an exponentiation a

x−1
2 , plus

4 multiplications, s squarings and two Frobenius over Fq plus one evaluation of the sequence

Cq(
m−1
2
, 2) that can be recursively computed using Algorithm 11. The average cost of computing

a
x−1
2 and Cq(

m−1
2
, 2) is (1

2
blog2(p)c − 3

2
)Mq + (blog2(p)c − s− 1)Sq, and 3

2
blog2mc(Mq + Fq),

DRAFT

30

respectively. Therefore, the overall average computational cost associated to The Tonelli-Shanks

Algorithm 5 is given as,

Tonelli-Shanks Alg. cost =[
1

2
blog2(p)c+

3

2
blog2(m)c+

s

2
+ 5

]
Mq

+

[
blog2(p)c+

1

8
(s2 + 11s− 16) +

1

2s

]
Sq

+

[
3

2
blog2(m)c+ 2

]
Fq.

MÜLLER’S ALGORITHM

Algorithm 7 requires the computation of the exponentiation (at2 − 4)
q−1
2 in step 5, which

we can be done as shown in the preliminary part by the computation of Cq(m, 2) and an

exponentiation with exponent p−1
2

in Fp of costs 3
2
(blog2mc+ 1)(Mq + Fq), and (1

2
blog2(p)c −

3
2
)Mp+(blog2(p)c−1)Sp, respectively. Moreover, the q−1

4
−th element of a Lucas Sequence can

be found using Alg. 6 at a cost of (blog2(q)c− 5
2
)Mq + (blog2(q)c− 3

2
)Sq. Using the Itoh-Tsujii

method, an inversion a−1 in Fq can be performed by doing the following:

a−1 =
(
a
(
a1+p+p2+···+pm−2

)p)−1
×

(
a1+p+p2+···+pm−2

)p
,

where the inversion
(
a
(
a1+p+p2+···+pm−2

)p)−1
is computed in the base-field Fp. Hence the cost

of an inversion is 1Cq(m−1, 1)+2Mq +1Fq +1Ip. Therefore, the overall average computational

cost associated to the Müller’s Algorithm 7 is given as:[
blog2(q)c+

3

2
blog2(m)c − 1

]
Mq +

[
blog2(q)c −

3

2

]
Sq

+

[
3

2
blog2(m)c+

3

2

]
Fq +

[
1

2
blog2(p)c −

3

2

]
Mp

+ [blog2(p)c − 1]Sp

if (a− 4)
q−1
2 = −1, and

DRAFT

31

[
blog2(q)c+ 6blog2(m)c+

15

2

]
Mq +

[
blog2(q)c+

1

2

]
Sq

+ [6blog2(m)c+ 7]Fq +

[
3

2
blog2(p)c −

9

2

]
Mp

+ [3blog2(p)c − 3]Sp + 1Ip

if (a− 4)
q−1
2 = 1.

Then the average cost of the algorithm is:

Müller Alg. cost =[
blog2(q)c+

15

4
blog2(m)c+

13

4

]
Mq

+

[
blog2(q)c −

1

2

]
Sq

[
15

4
blog2(m)c+

17

4

]
Fq

+ [blog2(p)c − 3]Mp + [2blog2(p)c − 2]Sp +
1

2
Ip.

APPENDIX C: PROOF OF TWO AUXILIARY LEMMAS REQUIRED IN THE MÜLLER’S

ALGORITHM 7 COMPLEXITY ANALYSIS

Lemma 3. In the field Fq, the number of QR a ∈ F∗q such that a− 4 is a QNR is q−1
4

.

Proof: To prove this one can at first compute the number of QR a ∈ F∗q such that a− 4 is

a QR, which is clearly half of the number of b ∈ F∗q such that b2 − 4 is a QR.

It was shown in [31, Lemma 3.1] that #{b ∈ Fq | b2 − 4 is a QR in Fq} = q+1
2

. Now, when

b = 0, −4 is a QR in Fq since q ≡ 1 (mod 4), thus we have #{b ∈ F∗q | b2−4 is a QR in Fq} =

q−1
2
, and then #{a ∈ F∗q | a and a−4 are QRs in Fq} = q−1

4
. Hence, the number of QR a ∈ F∗q

such that a− 4 is a QNR is q−1
2
− q−1

4
= q−1

4
.

Lemma 4. Let a ∈ F∗q be a QR, then the number of t ∈ F∗q such that at2 − 4 is a QNR is q−1
2

.

Proof: As in the proof of the previous Lemma, let us start by computing the number of

t ∈ F∗q such that at2 − 4 is a QR, i.e the number of t ∈ F∗q such that there exists s ∈ Fq and

at2 − 4 = s2. For such a t, at2 − 4 = s2 is equivalent to a − 4r2 = s2r2, where r = t−1, and

then to a = (s2 + 4)r2. Thus the number of these t is equal to the number of r ∈ Fq such that

DRAFT

32

there exist s ∈ Fq and a = (s2 + 4)r2.

Claim: The number of the above r’s is the double of the number of QRs c ∈ F∗q such that c− 4

is also a QR in Fq.

Indeed, suppose that we have such a c, let s = ±
√
c− 4, then s2 + 4 = c.

Hence, it can be seen that for each such c, one obtains two solutions for the equation a =

(s2 + 4)r2, namely, r1,2 = ±
√
a/(s2 + 4). Moreover, since for a different c′ with properties as

for c, this procedure gives two elements (r′1, r
′
2) with (r′1, r

′
2) 6= (r1, r2) and (r′1, r

′
2) 6= (r2, r1),

in addition to the fact that the above procedure is reversible, one can conclude that:

#{r ∈ Fq | ∃ s ∈ Fq and a = (s2 + 4)r2} = 2#{c ∈ F∗q | c and c− 4 are QRs in Fq}.

Recalling from the proof of previous Lemma, we have #{c ∈ F∗q | c− 4 is a QR in Fq} = q−1
4

,

and therefore #{t ∈ F∗q | at2 − 4 is a QR in Fq} = q−1
2
. Hence, the number of t ∈ F∗q such that

at2 − 4 is a QNR is q − 1− q−1
2

= q−1
2

.

APPENDIX D: COMPUTATIONAL COMPLEXITY OF ALGORITHM 10

Theorem 2. Algorithm 10 computes a square root of a QR a ∈ Fq2 with one exponentiation of

log2(q) bits in Fq2 and one square root computation in the field Fq.

Proof: At Step 2 of the computation phase, the value of a0 is,

(b2)qb2 = (b2)q+1 =
[
(a

q−1
4)2

]q+1

= (a
q−1
2)q+1,

which corresponds to the quadratic residuosity test of a in the field Fq2 . Thus, if a0 = −1, a is

a non quadratic residue in Fq2 and then ’false’ is returned. In the discussion that follows, it will

be assumed that a is a a QR (a0 = 1).

At Step 6, it is tested whether bqb = bq+1 = (a
q+1
2)

q−1
2 is or not one. If it is one, then it is

concluded that a
q+1
2 is a QR in Fq. For bqb = 1, at Step 7, a square root x0 of b2a = a

q+1
2 in Fq

is computed. Then the square root of a is given by x = x0b
q, since,

x2 = x20b
2q = a

q+1
2 (a

q−1
4)2q = aa

q−1
2 (a

q−1
2)q

= a(a
q−1
2)q+1 = aa0 = a.

Now, let us assume that bqb = −1. Notice that since in the precomputation phase, c0 was selected

as a QNR, then dqd = dq+1 = c
q2−1

2 is also a QNR. At Step 10, it is easy to see that the value

DRAFT

33

b2af lies in Fq where it is also a square. To see this, notice that,

(b2af)
q−1
2 = bq−1a

q−1
2 (dc)q−1 = bq−1b2dq−1d2

= (bqb)(dqd) = (−1)(−1) = 1.

After computing a square root x0 of b2af in Fq, it can be proved that x = x0b
qe is a square

root of a since,

x2 = (x0b
qe)2 = b2afb2qe2 = ab2q+2(dc)2

[
(dc)−1

]2
= ab2q+2 = aa0 = a.

DRAFT

