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Abstract. We introduce a new variant of the number field sieve algo-
rithm for discrete logarithms in Fpn called exTNFS. The most important
modification is done in the polynomial selection step, which determines the
cost of the whole algorithm: if one knows how to select good polynomials to
tackle discrete logarithms in Fpκ , exTNFS allows to use this method when
tackling Fpηκ whenever gcd(η, κ) = 1. This simple fact has consequences
on the asymptotic complexity of NFS in the medium prime case, where the
complexity is reduced from LQ(1/3, 3

√
96/9) to LQ(1/3, 3

√
48/9), Q = pn,

respectively from LQ(1/3, 2.15) to LQ(1/3, 1.71) if multiple number fields
are used. On the practical side, exTNFS can be used when n = 6 and
n = 12 and this requires to updating the keysizes used for the associated
pairing-based cryptosystems.

Keywords: Discrete Logarithm Problem; Number Field Sieve; Finite
Fields; Cryptanalysis

1 Introduction

The discrete logarithm problem (DLP) is at the foundation of a series of public key
cryptosystems. Over a generic group of cardinality N , the best known algorithm
to solve the DLP has an exponential running time of O(

√
N). However, if the

group has a special structure one can design better algorithms, as is the case
for the multiplicative group of finite fields FQ = Fpn where the DLP can be
solved much more efficiently than in the exponential time. For example, when
the characteristic p is small compared to the extension degree n, the best known
algorithms have quasi-polynomial time complexity [6,21].

DLP over fields of medium and large characteristic Recall the usual
LQ-notation,

LQ(`, c) = exp
(
(c+ o(1))(logQ)`(log logQ)1−`

)
,

? This work is a merged version of two consecutive works [24] and [4].



for some constants 0 ≤ ` ≤ 1 and c > 0. We call the characteristic p = LQ(`p, cp)
medium when 1/3 < `p < 2/3 and large when 2/3 < `p ≤ 1. We say that a field
Fpn is in the boundary case if `p = 2/3.

For medium and large characteristic, in particular when Q is prime, all
the state-of-the-art attacks are variants of the number field sieve (NFS) algo-
rithm. Initially used for factoring, NFS was rapidly introduced in the context of
DLP [20,32] to target prime fields. One had to wait almost one decade before
the first constructions for Fpn with n > 1 were proposed [33], known today [7] as
the tower number field sieve (TNFS). This case is important because it is used
to choose the key sizes for pairing based cryptosystems. Since 2006 one can cover
the complete range of large and medium characteristic finite fields [22]. This
latter approach that we denote by JLSV has the advantage to be very similar to
the variant used to target prime fields, except for the first step called polynomial
selection where two new methods were proposed: JLSV1 and JLSV2.

In the recent years NFS in fields Fpn with n > 1 has become a laboratory
where one can push NFS to its limits and test new ideas which are ineffective
or impossible in the factorization variant of NFS. Firstly, the polynomial se-
lection methods were supplemented with the generalized Joux-Lercier (GJL)
method [27,5], with the Conjugation (Conj) method [5] and the Sarkar-Singh (SS)
method [31]. One can see Table 1 for a summary of the consequences of these
methods on the asymptotic complexity. In particular, in all these algorithms the
complexity for the medium prime case is slightly larger than that of the large
prime case.

Table 1: The complexity of each algorithms in the medium and large prime cases.
Each cell indicates c if the complexity is LQ(1/3, (c/9)

1
3 ).

p = LQ(`p) 1/3 < `p < 2/3 best `p = 2/3 2/3 < `p < 1

TNFS [33,7] none none 64
NFS-JLSV [22] 128 64 64

NFS-(Conj and GJL) [5] 96 48 64
NFS-SS [31] 96 48 64

exTNFS (this article) 481 481 64

Secondly, a classical idea which was introduced in the context of factorization
is to replace the two polynomials f and g used in NFS by a polynomial f and
several polynomials gi, i = 1, 2, . . . which play the role of g. All the currently
known variants of NFS admit such variants with multiple number fields (MNFS)
which have a slightly better asymptotic complexity, as shown in Table 2. The

1 The best complexity is obtained when n has a factor of the appropriate size as
specified in Theorem 1.
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discrete logarithm problem allows to have a case with no equivalent in the
factorization context: instead of having a distinguished polynomial f and many
sides gi all the polynomials are interchangeable [8].

Table 2: The complexity of each algorithms using multiple number fields. Each
cell indicates an approximation of c if the complexity is LQ(1/3, (c/9)

1
3 )

p = LQ(`p) 1/3 < `p < 2/3 best `p = 2/3 2/3 < `p < 1

MTNFS [7] none none 61.93
MNFS-JLSV [8] 122.87 61.93 61.93

MNFS-(Conj and GJL) [30] 89.45 45.00 61.93
MNFS-SS [31] 89.45 45.00 61.93

MexTNFS (this article) 45.002 45.002 61.93

Thirdly, when the characteristic p has a special form, as it is the case for fields
in several pairing-based cryptosystems, one might speed-up the computations
by variants called special number field sieve (SNFS). In Table 3 we list the
asymptotic complexity of each algorithm. Once again, the medium characteristic
case has been harder than the large characteristic one.

Table 3: The complexity of each algorithms used when the characteristic has a
special form (SNFS) Each cell indicates an approximation of c if the complexity

is LQ(1/3, (c/9)
1
3 )

p = LQ(`p) 1/3 < `p < 2/3 2/3 < `p < 1

SNFS-JP [23] 64 32
STNFS [7] none 32

SexTNFS (this article) 32 2 32

Our contributions Let us place ourselves in the case when the extension degree
is composite with relatively prime factors, n = ηκ with gcd(η, κ) = 1. If the
particular cases η = 1 and κ = 1 we obtain known algorithms but we don’t
exclude thses cases from our presentation. The basic idea is to use the trivial
equality

Fpn = F(pη)κ .

2 The best complexity is obtained under the assumption that n has a factor of the
appropriate size. See Theorem 1.
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In the JLSV algorithm, Fpn is constructed as Fp[x]/k(x) for an irreducible
polynomial k(x) of degree n. In the TNFS algorithm Fpn is obtained as R/pR
where R is a ring of integers of a number field where p is inert. In our construction
Fpη = R/pR as in TNFS and Fpn = (R/pR)[x]/(k(x)) where k is a degree κ
irreducible polynomial over Fpη .

Interestingly, this construction can be integrated in an algorithm, that we
call the extended number field sieve (exTNFS), in which we can target Fpηκ
with the same complexity as FPκ for a prime P of the same bitsize as pη. Hence
we obtain complexities for composite extension degrees which are similar in the
medium characteristic case to the large characteristic case. This is because our
construction lets us to consider the norm of an element from a number field Kf

that is ‘doubly’ extended by h(t) and f(x), i.e. Kf := Q(ι, αf ), where ι and αf
denote roots of h and f , respectively. It provides a smaller norm size, which plays
an important role during the complexity analysis than when we work with an
absolute extension of the same degree.

Since the previous algorithms have an “anomaly” in the case `p = 2/3, where
the complexity is better than in the large prime case, when n is composite we
obtain a better complexity for the medium prime case than in the large prime
case.

Overview We introduce the new algorithm in Section 2 and analyse its com-
plexity in Section 3. The multiple number field variant and the one dedicated to
fields of SNFS characteristic are discussed in Section 4. In Section 5 we make a
precise comparison to the state-of-the-art algorithms at cryptographic sizes before
deriving new key sizes for pairings in Section 6. We conclude with cryptographic
implications of our result in Section 7.

2 Extended TNFS

2.1 Setting

Throughout this paper, we target fields FQ with Q = pn where n = ηκ such that
η, κ 6= 1, gcd(η, κ) = 1 and the characteristic p is medium or large, i.e. `p > 1/3.

First we select a polynomial h(t) ∈ Z[t] of degree η which is irreducible
modulo p. We put R := Z[t]/h(t) and note that R/pR ' Fpη . Then we select two
polynomials f and g with integer coefficients whose reductions modulo p have a
common factor k(x) of degree κ which is irreducible over Fpη . Our algorithm is
unchanged if f and g have coefficients in R because in all the cases we use the
number fields Kf (resp. Kg) defined by f (resp. g) above the fraction field of R
but this generalization is not needed for the purpose of this paper, except in a
MNFS variant.

The conditions on f , g and h yield two ring homomorphisms from R[x]/f(x)
(resp. R[x]/g(x)) to (R/pR)/k(x) = Fpηκ : in order to compute the reduction of a
polynomial in R[x] modulo p then modulo k(x) one can start by reducing modulo
f (resp. g) and continue by reducing modulo p and then modulo k(x). The result
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is the same if we use f as when we use g. Thus one has the commutative diagram
in Figure 1 which is a generalization of the classical diagram of NFS.

R[x]

Kf ⊃ R[x]/〈f(x)〉 R[x]/〈g(x)〉 ⊂ Kg

(R/pR)[x]/〈k(x)〉
mod p

mod k(x)

mod p

mod k(x)

Fig. 1: Commutative diagram of exTNFS. When R = Z this is the diagram of
NFS for non-prime fields. When k(x) = x−m for some m ∈ R this is the diagram
of TNFS. When both R = Z and k(x) = x−m this is the diagram of NFS.

After the polynomial selection, the exTNFS algorithm proceeds as all the
variants of NFS, following the same steps: relations collection, linear algebra and
individual logarithm. Most of these steps are very similar to the TNFS algorithms
as we shall explain below.

2.2 Detailed Descriptions

Polynomial Selection

Choice of h We have to select a polynomial h(t) ∈ Z[t] of degree η which is
irreducible modulo p and whose coefficients are as small as possible. As in TNFS
we try random polynomials h with small coefficients and factor them in Fp[t]
to test irreducibility. Heuristically, one succeeds after η trials and since η ≤ 3η

we expect to find h such that ‖h‖∞ = 1. For a more rigorous description on the
existence of such polynomials one can refer to [7].

Next we select f and g in Z[x] which have a common factor k(x) modulo
p of degree κ which remains irreducible over Fpη . It is here that we use the
condition gcd(η, κ) = 1 because an irreducible polynomial k(x) ∈ Fp[x] remains
irreducible over Fpη if and only if gcd(η, κ) = 1. If one has an algorithm to select
f and g in R[x] one might drop this condition, but in this paper f and g have
integer coefficients. Thus it is enough to test the irreducibility of k(x) over Fp
and we have the same situation as in the classical variant of NFS for non-prime
fields (JLSV): JLSV1, JLSV2, Conjugation method, GJL and Sarkar-Singh. Let
us present two of these methods which are important for results of asymptotic
complexity.

JLSV2 method We briefly describe the polynomial selection introduced in Section
3.2 of [22]. One first chooses a monic polynomial f0(x) of degree κ with small
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coefficients, which is irreducible over Fp (and automatically over Fpη because
gcd(η, κ) = 1). Set an integer W ≈ p1/(D+1), where D is a parameter determined
later subject to the condition D ≥ κ. Then we define f(x) := f0(x+W ). Take
the coefficients of g(x) as the shortest vector of an LLL-reduced basis of the
lattice L defined by the columns:

L := (p · x0, . . . , p · xκ, f(x),xf(x), . . . ,xD+1−κf(x)).

Here, f(x) denotes the vector formed by the coefficients of a polynomial f . Finally,
we set k = f then we have

– deg(f) = κ and ‖f‖∞ = O(p
κ

D+1 );
– deg(g) = D ≥ κ and ‖g‖∞ = O(p

κ
D+1 ).

Conjugation method We recall the polynomial selection method in Algorithm 4
of [5]. First, one chooses two polynomials g1(x) and g0(x) with small coefficients
such that deg g1 < deg g0 = κ. Next one chooses a quadratic, monic, irreducible
polynomial µ(x) ∈ Z[x] with small coefficients. If µ(x) has a root δ in Fp and
g0 +δg1 is irreducible over Fp (and automatically over Fpη because gcd(η, κ) = 1),
then set k = g0 + δg1. Otherwise, one repeats the above steps until such g1,
g0, and δ are found. Once it has been done, find u and v such that δ ≡ u/v
(mod p) and u, v ≤ O(

√
p) using rational reconstruction. Finally, we set f =

ResY (µ(Y ), g0(x) + Y g1(x)) and g = vg0 + ug1. By construction we have

– deg(f) = 2κ and ‖f‖∞ = O(1);

– deg(g) = κ and ‖g‖∞ = O(
√
p) = O(Q

1
2ηκ ).

The bound on ‖f‖∞ depends on the number of polynomials g0 +δg1 tested before
we find one which is irreducible over Fp. Heuristically this happens on average
after 2κ trials. Since there are 32κ > 2κ choices of g0 and g1 of norm 1 we have
‖f‖∞ = O(1).

Relation Collection The elements of R = Z[t]/h(t) can be represented uniquely
as polynomials of Z[t] of degree less than deg h.

We proceed as in TNFS and enumerate all the pairs (a, b) ∈ Z[t]2 of degree
≤ η − 1 such that ‖a‖∞, ‖b‖∞ ≤ A for a parameter A to be determined. We say
that we obtain a relation for the pair (a, b) if

Nf (a, b) := Rest(Resx(a(t)− b(t)x, f(x)), h(t)) and
Ng(a, b) := Rest(Resx(a(t)− b(t)x, g(x)), h(t))

are B-smooth for a parameter B to be determined (an integer is B-smooth if all
its prime factors are less than B). If ι denotes a root of h in R our enumeration
is equivalent to putting linear polynomials a(ι)− b(ι)x in the top of the diagram
of Figure 1.

One can put non-linear polynomials r(x) ∈ R[x] of degree τ−1 in the diagram
for any τ ≥ 2 but this is not necessary in this paper. Indeed, in this paper we
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enumerate polynomials r to attack Fpκη of the same degree as those that one
would use to attack FPκ for a prime P ≈ pη. It happens that in the large prime
case and for the best parameters of the boundary case the optimal value of τ
is 2. This determines us to state Lemma 1 only in the case τ = 2 and to write
everywhere r = a(ι) − b(ι)x, but we bear in mind that r could have a larger
degree, prove Lemma 2 in Appendix A, use it in the last paragraph of Section 4
and write Table 5 for arbitrary values of τ before observing that the optimal
value is again τ = 2.

Remark 1. The choice of the polynomials r in the top of the diagram is such
that the norm sizes are as small as posible. If one had an algorithm to pinpoint
the principal ideals of a number field which have small norms then one would
use this algorithm to generate the polynomials r.

As one of the referees notices, the advantage of exTNFS when compared
to the classical version of NFS is that our enumeration is less naive. Indeed,
since the norms are computed as an iteration of resultants, i.e. Nf (r(t, x)) =
Rest(Resx(r(t, x), f(x)), h(t)), we can enumerate polynomials r which make the
relative norm Resx(r(t, x), f(x)) small in some sense, for example we restrict to
linear polynomials r.

For each pair (a, b), i.e. r = a− bx, one obtains a linear equation where the
unknowns are logarithms of elements of the factor base as in the classical variant
of NFS for discrete logarithms. But let us define the factor base in our particular
case.

Factor base Let αf (resp. αg) be a root of f in Kf (resp. of g in Kg), the
number field it defines over the fraction field of R. Then the norm of a(ι) −
b(ι)αf (resp. a(ι) − b(ι)αg) over Q is Rest(Resx(a(t) − b(t)x, f(x)), h(t)) (resp.
Rest(Resx(a(t)− b(t)x, g(x)), h(t))) up to a power of l(f) (resp. l(g)), the leading
coefficient of f (resp. g). We call factor base the set of prime ideals of Kf and Kg

which can occur in the factorization of a(ι)− b(ι)αf and a(ι)− b(ι)αg when both
norms are B-smooth. By Proposition 1 in [7] we can give an explicit description
of the factor base as F(B) := Ff (B)

⋃
Fg(B) where

Ff (B) =

{
〈q, α− γ〉 :

q is a prime in Q(ι) lying over a prime
p ≤ B and f(γ) ≡ 0 (mod q)

}
⋃
{prime ideals of Kf dividing l(f)Disc(f)} .

and similarly for Fg(B).

Schirokauer maps If 〈a(ι) − b(ι)αf 〉 =
∏

q∈Ff (B) q
valq(a(ι)−b(ι)αf ) and 〈a(ι) −

b(ι)αg〉 =
∏

q∈Fg(B) q
valq(a(ι)−b(ι)αg) we write∑

q∈Ff (B)

valq(a(ι)−b(ι)αf ) log q+εf (a, b) =
∑

q∈Fg(B)

valq(a(ι)−b(ι)αg) log q+εg(a, b)

7



where the log sign denotes virtual logarithms in the sense of [32] and [22] and εf
and εg are correction terms called Schirokauer maps which were first introduced
in [32].

The novelty for TNFS and exTNFS with respect to JLSV is that Kf and Kg

are constructed as tower extensions instead of absolute extensions. On the other
hand, it is more convenient to work on absolute extensions when we compute
Schirokauer maps. We solve this problem by computing primitive elements θf
(resp. θg) of Kf/Q (resp. Kg/Q). For a proof we refer to Section 4.3 in [22].

Linear algebra and individual logarithm These two steps are unchanged
with respect to the classical variant of NFS. The linear algebra step, comes
after relation collection and consists in solving the linear system over Fl for
some prime factor l of the order of F∗Q. Using Wiedemann’s algorithm this has
a quasi-quadratic complexity in the size of the linear system, which is equal to
the cardinality of the factor base. In [7] it is shown that the factor base has
(2 + o(1))B/ logB elements, so the cost of the linear algebra is B2+o(1).

In the individual logarithm step one writes any desired discrete logarithm
as a sum of virtual logarithms of elements in the factor base. Since the step is
very similar to the corresponding step in NFS we keep the description for the
Appendix.

3 Complexity

The complexity analysis of exTNFS follows the steps of the analysis of NFS in
the case of prime fields. It is expected that the stages of the algorithm other
than the relation collection and the linear algebra are negligible, hence we select
parameters to minimize their cost and afterwards we check that the other stages
are indeed negligible.

Let us call T the time spent in average for each polynomial r ∈ R[x] enumer-
ated in the relation collection stage (in this paper r = a(ι)− b(ι)x), and let Pf
(resp. Pg) be the probability that the norm Nf (resp. Ng) of r with respect to f
(resp. g) is B-smooth. The number of polynomials that we test before finding
each new relation is on average 1/(PfPg), so the cost of the relations collection
is #F(B)T/(PfPg).

We make the usual heuristic that the proportion of smooth norms is the
same as the proportion of arbitrary positive integers of the same size which are
also smooth, so Pf = Prob(Nf , B) (resp Pg = Prob(Ng, B) ) where Prob(x, y)
is the probability that an arbitrary integer less than x is y-smooth. The value
of T depends on whether we use a sieving technique or we consider each value
and test smoothness with ECM [26]; if we use the latter variant we obtain T =
LB(1/2,

√
2)(logQ)O(1), so T = Bo(1). Using the algorithm of Wiedemann [34]

the cost of the linear algebra is (#F(B))2+o(1) = B2+o(1). Hence, up to an
exponent 1 + o(1), we have

complexity(exTNFS) =
B

Prob(Nf , B)Prob(Ng, B)
+B2. (1)
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This equation is the same for NFS, TNFS, exTNFS and the corresponding SNFS
variants. The differences begin when we look at the size of Nf and Ng which
depend on the polynomial selection method. In what follows we instantiate
Equation (1) with various cases and obtain equations which have already been
analyzed in the literature.

Lemma 1. Let h and f be irreducible polynomials over Z and call η := deg h
and κ := deg(f). Let a(t), b(t) ∈ Z[t] be polynomials of degree at most η − 1 with
‖a‖∞, ‖b‖∞ ≤ A. We put Nf (a, b) := Rest(Resx(a(t)− b(t)x, f(x)), h(t)). Then
we have

1.
|Nf (a, b)| < Aη·κ‖f‖η∞‖h‖κ·(η−1)∞ C(η, κ), (2)

where C(η, κ) = (η + 1)(3κ+1)η/2(κ+ 1)3η/2.
2. Assume in addition that ‖h‖∞ is bounded by an absolute constant H and

that p = LQ(`p, c) for some `p > 1/3 and c > 0. Then

Nf (a, b) ≤ Eκ‖f‖η∞LQ(2/3, o(1)), (3)

where E = Aη

Proof. 1. This is proven in Theorem 3 in [7].
2. The overhead is bounded as follows

log(‖h‖κ(η−1)∞ C(η, κ)) ≤ κη logH + 3κη log η + 3η log κ

= O(log(Q)1−`p(log logQ)`p)

= o(1) log(Q)2/3(log logQ)1/3.

ut

If Nf = LQ(2/3) then we can forget the overhead LQ(2/3, o(1)) as the
Canfield-Erdös-Pomerance theorem states that the smoothness probability satis-
fies, uniformly on x and y in the validity domain,

Prob(x1+o(1), y) = Prob(x, y)1+o(1).

The next statement summarizes our results.

Theorem 1. (under the classical NFS heuristics) If Q = pn is a prime power
such that

– p = LQ(`p, cp) with 1/3 < `p;
– n = ηκ such that η, κ 6= 1 and gcd(η, κ) = 1

then the discrete logarithm over FQ can be solved in LQ(1/3, C) where C and the
additional conditions are listed in Table 4.

In the rest of this section we prove this statement. In any case in the table, one

shares the conditions κ = o
(

( logQ
log logQ )

1
3

)
or κ ≤ c( logQ

log logQ )
1
3 for some constant

c > 0. These are equivalent to say that P = pη = LQ(`P ) for some `P ≥ 2/3.
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algorithm C conditions

exTNFS-JLSV2 (64/9)
1
3 κ = o

(
( logQ
log logQ

)
1
3

)
exTNFS-GJL (64/9)

1
3 κ ≤ ( 8

3
)−

1
3 ( logQ

log logQ
)
1
3

exTNFS-Conj (48/9)
1
3

`p < 2/3 or `p = 2/3 and cp < 12
1
3

κ = 12−
1
3 ( logQ

log logQ
)
1
3

SexTNFS (32/9)
1
3

κ = o
(

( logQ
log logQ

)
1
3

)
p is d-SNFS with d = (2/3)

1
3 +o(1)
κ

( logQ
log logQ

)
1
3

MexTNFS-JLSV2 ( 92+26
√
13

27
)
1
3 κ = o

(
( logQ
log logQ

)
1
3

)
MexTNFS-GJL ( 92+26

√
13

27
)
1
3 κ ≤ ( 7+2

√
13

6
)−1/3( logQ

log logQ
)
1
3

MexTNFS-Conj
3+
√

3(11+4
√
6)(

18(7+3
√
6)
)1/3 `p < 2/3 or `p = 2/3 and cp < ( 56+24

√
6

12
)1/3

κ = (( 56+24
√
6

12
)−1/3 + o(1))( logQ

log logQ
)
1
3

Table 4: Complexity of exTNFS variants.

3.1 exTNFS-JLSV2

In this section we assume that n has a factor κ such that

κ = o

((
log(Q)

log log(Q)

)1/3
)
.

Let us introduce ‖h‖∞ = O(1) and the values of ‖f‖∞, ‖g‖∞ ≈ pκ/(D+1) coming
from the JLSV2 method (Section 2.2) in Equation (2). Then we get

|Nf (a, b)| <
(
Aηκ(p

κ
D+1 )η

)1+o(1)
=
(
EκP

κ
D+1

)1+o(1)
, (4)

|Ng(a, b)| <
(
AηD(p

κ
D+1 )η

)1+o(1)
=
(
EDP

κ
D+1

)1+o(1)
, (5)

where we set E := Aη and P := |R/pR| = pη.

One recognizes the expressions for the norms in the large prime case [22,
Appendix A.3.], where P = p and κ = n. We conclude that we have the same
complexity:

complexity(exTNFS with JLSV2) = LQ(1/3, 3
√

64/9).

3.2 exTNFS-GJL

We relax a bit the condition from the previous section: we assume that n has a
factor κ such that

κ ≤ (8/3)−
1
3

(
log(Q)

log log(Q)

)1/3

.
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Recall the characteristics of our polynomials: ‖h‖∞ = O(1) and deg h = η;
‖f‖∞ = O(1) and deg f = D + 1 for a parameter D ≥ κ; ‖g‖∞ ≈ pκ/(D+1) and
deg g = D. We inject these values in Equation (2) and we get

|Nf (a, b)| < ED+1LQ(2/3, o(1)), (6)

|Ng(a, b)| < EDQ1/(D+1)LQ(2/3, o(1)), (7)

where we set E := Aη and P := |R/pR| = pη. We recognize the expression in the
first equation of Section 4.2 in [5], so

complexity(exTNFS with GJL) = LQ(1/3, 3
√

64/9).

3.3 exTNFS-Conj

We propose here a variant of NFS which combines exTNFS with the Conjugation
method of polynomial selection.

Let us consider the case when n = ηκ with

κ =

(
1

121/3
+ o(1)

)(
log(Q)

log log(Q)

)1/3

.

Note that this implies `p ≤ 2/3 so that we are in the medium characteristic or
boundary case.

As before, evaluating the values coming from the Conjugation method (Sec-
tion 2.2) in Equation (2), we have

|Nf (a, b)| < E2κLQ(2/3, o(1)), (8)

|Ng(a, b)| < Eκ(pκη)1/(2κ)LQ(2/3, o(1)). (9)

When we combine Equations (8) and (9) we obtain

|Nf (a, b)| · |Ng(a, b)| < E3κQ(1+o(1))/(2κ).

But this is Equation (5) in [5] when τ = 2 (the parameter τ is written as t
in [5], the number of coefficients of the sieving polynomial r). The rest of the
computations are identical as in point 3. of Theorem 1 in [5], so

complexity(exTNFS-Conj) = LQ(1/3, (48/9)1/3).

4 Variants

4.1 The case when p has a special form (SexTNFS)

In some pairing-based constructions p has a special form, e.g. in the Barreto-
Naehrig curves [9] p = 36u4 + 36u3 + 24u2 + 6u + 1 of embedding degree 12
and in the Freeman pairing-friendly constructions of embedding degree 10 [18,
Section 5.3] p = 25u4 + 25u3 + 25u2 + 10u+ 3. For a given integer d, an integer
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p is d-SNFS if there exists an integer u and a polynomial Π(x) with integer
coefficients so that

p = Π(u),

degΠ = d and ‖Π‖∞ is bounded by an absolute constant.

We consider the case when n = ηκ, gcd(η, κ) = 1 with κ = o

((
logQ

log logQ

)1/3)
and p is d-SNFS. In this case exTNFS is unchanged: we select h, f and g three
polynomials with integer coefficients so that

– h is irreducible modulo p, deg h = η and ‖h‖∞ = O(1);
– f and g have a common factor k(x) modulo p which is irreducible of degree κ.

Choice of f and g using the method of Joux and Pierrot (as in SNFS-JP).
Find a polynomial S of degree κ − 1 with coefficients in {−1, 0, 1} so that
k(x) = xκ + S(x)− u is irreducible modulo p. Since the proportion of irreducible
polynomials in Fp of degree κ is 1/κ and there are 3κ choices we expect this step
to succeed. Then we set {

g = xκ + S(x)− u
f = Π(xκ + S(x)).

If f is not irreducible over Z[x], which happens with small probability, start
over. Note that g is irreducible modulo p and that f is a multiple of g modulo
p. Precisely, as in [23], we choose S(x) so that it is of degree O(log κ/ log 3).
Since 3O(log κ/ log 3) > κ, we still have enough chance to have irreducible g. By
construction we have:

– deg(g) = κ and ‖g‖∞ = u = p1/d;
– deg(f) = κd and ‖f‖∞ = O

(
(log κ)d

)
.

Let us compute the analysis of this particular case of exTNFS. We inject
these values in Equations (2) and obtain

|Nf (a, b)| ≤ EκdLQ(2/3, o(1))

|Ng(a, b)| ≤ EκP 1/dLQ(2/3, o(1)),

where E := Aη and P := |R/pR| = pη. We recognize the size of the norms in the
analysis by Joux and Pierrot [23, Section 6.3.], so we obtain the same complexity
as in their paper:

complexity(SexTNFS) = LQ(1/3, (32/9)1/3).

4.2 The multiple polynomial variants (MexTNFS)

Virtually every variant of NFS can be accelerated using multiple polynomials
and exTNFS makes no exception. The multiple variant of exTNFS is as follows:
choose f and g which have a common factor k(x) modulo p which is irreducible
of degree κ using any of the methods given in Section 2.2. Next we set f1 = f

12



and f2 = g and select other V − 2 irreducible polynomials fi := µif1 + νif2
where µi =

∑η−1
j=0 µi,jι

j and νi =
∑η−1
j=0 νi,jι

j are elements of R = Z[t]/hZ[t] such

that ‖µi‖∞, ‖νi‖∞ ≤ V
1
2η where V = LQ(1/3, cv) is a parameter which will be

selected later. Denote αi a root of fi for i = 1, 2, . . . , V .
Once again the complexity depends on the manner in which the polynomials

f and g are selected.

MexTNFS-JLSV2 Barbulescu and Pierrot [8, Section 5.3.] analysed the com-
plexity of MNFS with JLSV2, so we only need to check that the size of the norm
is the same for NFS and exTNFS for each polynomial fi with 1 ≤ i ≤ V . By
construction we have:

– deg(f1) = κ and ‖f1‖∞ = p
κ

D+1 ;

– deg(fi) = D ≥ κ and ‖fi‖∞ = V
1
2η p

κ
D+1 for 2 ≤ i ≤ V .

As before, we inject these values in Equations (2) and obtain

|Nf1(a, b)| < Eκ(pκη)
1

D+1LQ(2/3, o(1))

|Nfi(a, b)| < ED(pκη)
1

D+1LQ(2/3, o(1)) for 2 ≤ i ≤ V.

We emphasize that (V
1
2η )η = V

1
2 = LQ(1/3, cv/2) = LQ(2/3, o(1)) which is true

without any condition on η. Hence we obtain

complexity(MexTNFS-JLSV2) = LQ

(
1/3,

(92 + 26
√

13

27

)1/3)
.

MexTNFS-Conj and GJL Pierrot [30] studied the multiple polynomial variant
of NFS when the Conjugation method or GJL are used. To show that we obtain
the same complexities we need to show that the norm with respect to each
polynomial is the same as in the classical NFS, except for a factor LQ(2/3, o(1)),

which boils down to testing again that (V
1
2η )η = LQ(2/3, o(1)) which is always

true. When P = pη = LQ(2/3, cP ) such that cP > ( 7+2
√
13

6 )1/3 and τ is the
number of coefficients of the enumerated polynomials r, then the complexity
obtained is LQ(1/3, C(τ, cP )) where

C(τ, cP ) =
2

cP τ
+

√
20

9(cP τ)2
+

2

3
cP (τ − 1).

The best case is when cP = ( 56+24
√
6

12 )1/3 and τ = 2 (linear polynomials):

complexity(best case of MexTNFS-Conj) = LQ

1/3,
3 +

√
3(11 + 4

√
6)(

18(7 + 3
√

6)
)1/3

 ,

where the second constant being approximated by 1.71.
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5 Comparison and examples

NFS, TNFS and exTNFS have the same main lines:

– we compute a large number of integer numbers;
– we factor these numbers to test if they are B-smooth for some parameter B;
– we solve a linear system depending on the previous steps.

If we reduce the size of the integers computed in the algorithm we reduce the
work needed to find a subset of integers which are B-smooth, which further
allows us to adapt the other parameters so that the linear algebra is also cheap.
A precise analysis is complex because in some variants one tests smoothness
using ECM while in others one can sieve (which is faster). Nevertheless, as a first
comparison we use the criterion in which one must minimize the bitsize of the
product of the norms.

5.1 Precise comparison when p is arbitrary

Each method of polynomial selection has a different expression of the norm
bitsize, which depends on the number τ of coefficients of the polynomials r(x)
that are enumerated during the relation collection. Let us reproduce Table 2
in [31], which we extend with TNFS and exTNFS:

Method norms product conditions and parameters

NFS-JLSV1 E
4n
τ Q

τ−1
n

NFS-JLSV2 E
2(n+D)

τ Q
τ−1
D+1 D = deg(g) ≥ n

NFS-GJL E
2(2D+1)

τ Q
τ−1
D+1 D ≥ n

NFS-Conj E
6n
τ Q

τ−1
2n

NFS-SS E
2η(2K+1)

τ Q
τ−1

η(K+1) n = ηκ,K ≥ κ,deg(g) = ηK

TNFS E
2(d+1)
τ Q

2(τ−1)
d+1 n small, d = deg(f)

exTNFS-JLSV1 E
4κ
τ Q

τ−1
κ n = ηκ, gcd(η, κ) = 1, η small

exTNFS-JLSV2 E
2(κ+D)

τ Q
τ−1
D+1 n = ηκ, gcd(η, κ) = 1, η small, D ≥ κ

exTNFS-GJL E
2(2D+1)

τ Q
τ−1
D+1 n = ηκ, gcd(η, κ) = 1, η small, D ≥ κ

exTNFS-Conj E
6κ
τ Q

(τ−1)
2κ n = ηκ, gcd(η, κ) = 1, η small

exTNFS-SS E
2κ0(2K+1)

τ Q
τ−1

κ0(K+1)
n = ηκ0κ1, gcd(η, κ1) = 1,

η small,K ≥ κ1,deg(g) = κ0K

Table 5: Comparison of norm sizes. τ = deg r(x) while D and K are integer
parameters subject to the conditions in the last column.

Note that the method of Sarkar and Singh requires that n is composite. The
settings based on TNFS (TNFS, exTNFS-GJL etc) have an overhead due to the
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combinatorial factor which is not written in this table, so we add the condition
that the degree of the intermediate number field must be small. Finally, exTNFS
requires the additional condition that κ and η are relatively prime.

Extrapolation of E The parameter E depends on the implementation of NFS
and might be different for one variant to another. Let us take for example three
computations with NFS which tackle various problems of the same bitsize:

– Danilov and Popovyan [16] factored a 180-digit RSA modulus using log2E ≈
30 (although the size of the pairs (a, b) in theirs computations is not written
explicitly, one can compute E using the range of special-q’s and the default
cardinality of the sieving space per special-q, which is 230);

– Bouvier et al. [12] computed discrete logarithms in a 180-digit field Fp using
log2E ≈ 30 (computed from other parameters).

– Barbulescu et al. [5] computed discrete logarithms in a 180-digit field Fp2
using log2E ≈ 29.

We see that in the first approximation E depends only on the bitsize of the field
that we target and has the same value as in the factoring variant of NFS. Let us
extrapolate E from the pair (log2Q = 600, log2E = 30) using the formula

E = cLQ(1/3, (8/9)1/3).

Since exTNFS requires that gcd(η, κ) = 1, the first case to study is n = 6.

The case of fields Fp6 When n = 6 we can use the general methods

– NFS-JLSV1 (bitsize E
24
τ Q

τ−1
6 , best values of τ are 3 and 2)

– NFS-GJL with D equal to its optimal value, 6 (bitsize E
26
τ Q

τ−1
7 , best values

of τ are 3 and 2 )
– TNFS with deg f = 5, its optimal value for this range of fields (bitsize

E
12
τ Q

τ−1
3 , best value of τ is 2)

as well as the methods which exploit the fact that n is composite

– Sarkar-Singh (NFS-SS) with η = 2 and K = 3, best value so that K ≥ n/η
for this range of fields, (E

28
τ Q

τ−1
8 ) respectively η = 3 and K = 2, best value

so that K ≥ n/η for this range of fields, (bitsize E
30
τ Q

τ−1
9 , best τ are 4 and

3 )
– exTNFS with η = 2 or η = 3 and one of two methods for selecting f and g
• exTNFS-GJL with η = 3, D = 2 its best value so that D ≥ n/η, (bitsize

E
10
τ Q

τ−1
3 , best value of τ is 2 )

• exTNFS-GJL with η = 2, D = 3 its best value so that D ≥ n/η,

(E
14
τ Q

τ−1
4 , best values of τ are 3 and 2 )

• exTNFS-Conj with η = 2 (bitsize E
18
τ Q

τ−1
6 , best values of τ is 2).

• exTNFS-Conj with η = 3 (bitsize E
12
τ Q

τ−1
4 , best values of τ are 3 and

2).

15



300 400 500 600 700 800 900 1,000
200

300

400

500

600

log2Q

lo
g
2
(n

o
rm

s)

NFS-JLSV1

NFS-SS

TNFS

exTNFS-Conj(κ = 2)

exTNFS-Conj(κ = 3)

Fig. 2: Plot of the norms bitsize for several variants of NFS. Horizontal axis
indicates the bitsize of pn while the vertical axis the bitsize of the norms product.
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We plot the values of the norms product in Figure 2. Note that exTNFS with
the Conjugation method seems to be the best choice for fields between 300 and
1000 bits.

For even more insight we enter into details on a specific field.
Example 1: Let us consider the field Fp6 when

p = 3141592653589793238462643383589.

The bitsize of Q = p6 is 608 and its number of decimal digits is 182. Since the
parameter E can only be chosen after an effective computation we are bound
to make the hypothesis that it will have a similar value as in a series of record
computations with NFS having the same input size:

In the following log2E = 30. Let us make a list with the norm sizes obtained
with each version of NFS:

1. NFS-JLSV1. We take for example f = x6 − 1772453850905518 and g =
1772453850905514x6 + 96769484157337. The sieving space contains polyno-
mials of degree two r(x) = a+ xb+ cx2 ∈ Z[x], i.e. τ = 3, and the absolute
value of the coefficients is bounded by E2/3. The upper bound on the norms’
product is

norms bitsize(NFS-JLSV1) = 8 log2E +
1

3
log2Q ≈ 440.

2. NFS-Conj. We take f = x12+3 and g = 1016344366092854x6−206700367981621.
We sieve polynomials r ∈ Z[x] of degree 4, i.e. τ = 5, and the absolute value
of the coefficients is bounded by E2/5. Then we obtain

norms bitsize(NFS-Conj) =
36

5
log2E +

1

3
log2Q ≈ 418.

3. TNFS. We take f = x5 + 727139x3 + 538962x2 + 513716x + 691133, g =
x − 1257274 and h = t6 + t4 + t + 1. Here, h is chosen so that Fp6 =
(Z[t]/h(t))/p(Z[t]/h(t)). The sieving polynomials are of the form r(x) =

a(ι)− b(ι)x, i.e. τ = 2. Here, a =
∑5
i=0 aiι

i and b =
∑5
i=0 aiι

i are elements
in Z(ι) = Z[t]/h(t) with the coefficients whose absolute values bounded by
A = E1/ deg(h) = E1/6. Note that the parameter d = deg f is equal to 5, so
that we have

norms bitsize(TNFS) = 6 log2E +
1

3
log2Q ≈ 380.

4. exTNFS-Conj with η = 2 and κ = 3. We take f = x6−3, g = 309331385734750x3−
1851661516636217 and h = t2+2. We sieve polynomials of the form a(ι)−b(ι)x,
i.e. τ = 2, where a and b are linear in ι with their coefficients bounded by
A = E1/2. Hence we obtain

norms bitsize(exTNFS η = 2) = 9 log2E +
1

6
log2Q ≈ 370.
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5. exTNFS-Conj with η = 3 and κ = 2. We take f = x4 − 2x3 + x2 − 3,
g = 1542330130901467x2 − 1542330130901467x − 923667359431967 and
h = t3 + t+ 1. Again we sieve polynomials of the form a(ι)− b(ι)x, i.e. τ = 2,
where a and b are quadratic in ι with coefficients bounded by A = E1/3. This
leads to

norms bitsize(exTNFS κ = 2) = 6 log2E +
1

4
log2Q ≈ 330.

We conclude that in this example the best choice is exTNFS with κ = 2.

The condition gcd(η, κ) = 1 is also satisfied by n = 10, 12, 14, 18, 20, 24 etc,
but we do not discuss these cases in detail.

5.2 Precise comparison when p is SNFS

To compare precise norm sizes when p is a d-SNFS prime, let us consider Table 6.

Method norms product conditions

STNFS E
2(d+1)
τ Q

τ−1
d

SNFS-JP E
2n(d+1)

τ Q
τ−1
nd

SexTNFS E
2κ(d+1)

τ Q
τ−1
κd

n = ηκ
gcd(κ, η) = 1

2 ≤ η < n

Table 6: Comparison of norm sizes when p is d-SNFS prime.

Note that SexTNFS encompass SNFS-JP when η = 1, and STNFS when
η = n, so we only call it SexTNFS when 2 ≤ η < n.

As in the case when p is arbitrary, we do not have precise estimations of
E, especially in the large range of fields log2Q ∈ [1000, 10000]. We are going
to extrapolate from the pair (log2Q = 1039, log2E = 30.38), due to the record
of [1], using the formula

E = cLQ(1/3, (4/9)
1
3 ).

Let us introduce a notation for the bitsize of SexTNFS, for any integers κ ≥ 1
and τ ≥ 2:

Cnorm(τ, κ) =
2κ(d+ 1)

τ
logE +

τ − 1

κd
logQ.

For each κ, Cnorm(τ, κ) has a minimum at the integer τ ≥ 2 which best approxi-

mates
(

2κ2d(d+1) logE
logQ

)1/2
.
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The case of 4-SNFS primes . To fix ideas, we restrict at the case d = 4. When
κ = 1, i.e. STNFS, the norm size has its minimum at τ = 2 as soon as logQ

logE ≥
40/22 = 10. In our range of interest (300 ≤ log2Q ≤ 10000), the ratio logQ/ logE
is always larger than 19. So, we only take care of sieving linear polynomials
in the case of STNFS with d = 4. Similarly, it suffices to consider sieving
linear polynomials in the case of SexTNFS with κ = 2 (resp. κ = 3) whenever
logQ/ logE ≥ 40 (resp. logQ/ logE ≥ 90). It is satisfied when Q is of at least
1450 bits (resp. 6300 bits).

Let us compare the norm sizes of STNFS and SexTNFS when we sieve only
linear polynomials (τ = 2) in both cases. The value Cnorm(2, κ) has a minimum

at κ =
(

logQ
d(d+1) logE

)1/2
. In the case of d = 4, this value has minimum at κ = 2

or κ = 3 whenever 20 ≤ logQ/ logE ≤ 180 = 20 · 32. Thus, in fields with large
size, SexTNFS with κ = 2 or κ = 3 is better than STNFS.

In Figure 3 we plot the norm sizes of SNFS-JP, STNFS, and SexTNFS for
n = 12 and d = 4 for Q is of from 300 bits to 5000 bits. We also compare these
values with the best choice for general prime cases (exTNFS with Conjugation
when κ = 3). From the plots we remark that STNFS could be a best choice
for small Q otherwise SexTNFS with small κ becomes an important challenger
against any other methods as the size of Q grows.

To get a better intuition, let us see in detail a specific field.
Example 2: We consider the prime p = P4(u4) where

P4(x) = 36x4 + 36x3 + 24x2 + 6x+ 1 and u4 = 2158 − 2128 − 268 + 1

(Section 6 in [2]), and note that p is 4-SNFS. The bitsize of p12 is 7647 for which
we predict by extrapolation that log2E = 76.15.

Let us make a list with the norm sizes obtained with each version of NFS:

1. STNFS. The size of the norms is E2(d+1)/τQ(τ−1)/d and has its minimum for
τ = 2. Take for example h = x12 + x10 + x9 − x6 − 1, f = P4 and g = x− u4.

norms bitsize(STNFS) = 5 log2E +
1

4
log2Q ≈ 2292.

2. SNFS-JP. The size of the norms is E2n(d+1)/τQ(τ−1)/(nd) and has its minimum
when τ = 8. Take for example f = P4(x12 + x6 + x3 + 1) and g = (x12 + x6 +
x3 + 1)− u4.

norms bitsize(SNFS-JP) =
120

7
log2E +

1

8
log2Q ≈ 2257.

3. SexTNFS-JP η = 4. In this case the norm size is E2κ(d+1)/τQ
(τ−1)
κd and has

its minimum when τ = 2. Take for example h = x4 − x− 1, f = P4(x3 − x2)
and g = x3 − x2 − u4.

norms bitsize(SexTNFS) = 15 log2E +
1

12
log2Q ≈ 1779.

One can do a similar analysis in the cases d = 5, d = 6 etc, but we do not present
the details here.
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Fig. 3: Comparison when n = 12 and d = 4 for 300 ≤ log2Q ≤ 5000. Horizontal
axis indicates the bitsize of pn while the vertical axis the bitsize of the norms
product.
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6 On the necessity to update key sizes

Pairings are not included in the 2012 report of NIST [28] but they are included
in the 2013 report of ENISA [17, Table 3.6] where pairings and RSA have the
same recommended key sizes. This is in accordance with a general belief stated
for example by Lenstra [25, Section 5.1]:

“An RSA modulus n and a finite field Fpk therefore offer about the
same level of security if n and pk are of the same order of magnitude.”

Freeman, Scott and Teske [19] compiled key size recommendations from different
sources in Table 1.1, all of which make or are coherent with the above supposition.

The currently recommended key sizes are derived from the complexity L[c] :=
Lpn(1/3, (c/9)1/3) with c = 64, which corresponds to NFS over fields whose
characteristic is large and doesn’t have a special form. This complexity has been
a safe choice until recently because the constant c = 64 has been the smallest
among the variants of NFS over fields of non-small characteristic.

The case of primes of general form However, exTNFS has a constant c = 48
for a vast range of fields, so the safe choice becomes to derive key sizes using
L[48]. A more precise evaluation would require to determine what embedding
degree is large enough to be in the medium prime case, i.e. c = 48, and what
degree is smaller so that we use c = 64. This seems to be hard to tell, especially
after the record computation presented in [5, Section 7] showed that the attack
in Fp2 was 260 times faster than the attack in Fp′ where p and p′ are primes so
that 2 log2(p) ≈ log p′.

A crude and naive estimation, when a constant cold is replaced by cnew, is to
write

LQnew(1/3, cnew) = LQold
(1/3, cold)

which is equivalent to
logQnew

logQold
=

cold
cnew

+ o(1). (10)

Overall, we might say that the key size should be increased by 64/48 ≈ 1.33 in
an asymptotic sense (simply ignoring the factor o(1)), which allows to comprehend
what means a change in the second constant of NFS. We avoid to derive a table of
key sizes using the methods in [29, Appendix H] and [25] not because the formulae
are difficult but because we lack the experience with record computations needed
to validate the formulae.

The special prime case When the characteristic has a special form the constant
c changed twice in three years and there are some subtle points to understand
about how the key sizes were computed. Before the algorithm of Joux and Pierrot
there was no variant of NFS for Fpn with n > 1 and p of special form. Hence,
the recommended values correspond to c = 64. Their SNFS algorithm updated
the constants to 32 in large characteristic and 64 in the middle prime case.
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A pessimistic choice would have been to update the key sizes using c = 32.
Nevertheless, the very important example of Barreto-Naehrig pairings has an
embedding degree n = 12 which seems to be considered as medium sized (the
difference between large and medium characteristic is asymptotic and is hard to
translate in practice). Due to SexTNFS the constant is now c = 32 for all fields
of non-small characteristic, so we don’t need a precise examination anymore, as
long as n has a factor ≥ 2. We conclude that the key sizes of pairings where p
has a special form, in a polynomial of degree ≥ 3, should increase roughly by a
factor cold/cnew = 2.

7 Cryptologic consequences

Our work comes in a context of recent progress on the DLP in finite fields pn

of degree n ≥ 2. The case n = 2 has been the object of precise estimations and
real-life computations and is now known to be weaker than the case of prime
fields. On the contrary, the cases n = 6 and n = 12 remained difficult acording
to precise practical estimations.

In this paper we proposed the exTNFS which allowed us to apply the polyno-
mials constructed in the case n = 2, which have good properties, to the highly
important case n = 6, where the polynomials had less good properties. A precise
estimation showed that this invalidates the key sizes currently and we recommend
that they should be updated (see Section 6). When p is of special form, as in
the Barreto-Naehrig construction, one needs to update the key sizes for large
characteristic because of the algorithm proposed by Joux and Pierrot in 2013 but
it is not clear if the keys of the Barreto-Naehrig keys had to be updated. Due to
exTNFS the key sizes of all pairings of SNFS characteristic need to be updated.

It is interesting to remark that the new variants of NFS exploit those properties
of some pairings which made them fast:

– Special form characteristic. The advantage of using special form charac-
teristic is that it eliminates the cost of modular reductions (see for example [10,
Algorithm 4]). It is the same special form of p which allows to use the fastest
variant of exTNFS, i.e. SexTNFS, rather than the general case algorithm.

– Composite embedding degree. In this case the pairings computations
are done using tower extension field arithmetic, as explained for example
in [10, Section 3.1]. The same structure of tower extension field is a main
ingredient of exTNFS, as explained in Remark 1.

A large number of pairings have either special form characteristic or an
embedding degree divisible by 2 or 3, for example the Barreto-Naehrig curves
have both properties. In a recent preprint Chatterjee et al. [13] discussed the
pairing constructions which are not affected by our algorithms, in particular the
pairings of embedding degree one which are as secure as DSA and RSA. This
shows that, regardless on the progress on DLP in Fpn with n > 1, pairings are a
secure tool for cryptography. Nevertheless, safe pairings might be very slow and
determine cryptographers to use alternatives, as Chillotti et al. did in [14] for an
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e-voting protocol. We conclude with the question asked by our referee: “Is this
the beginning of the end for pairing-based based cryptography?”

A Non-linear polynomials

In all the variants of exTNFS that we have discussed, one puts linear polynomials
r(x) ∈ R[x] in the diagram of Figure 1. This is justified by the fact that exTNFS
is a way of copying the setting from large characteristic to the medium prime
case. Since in the large characteristic, the best choice is to take linear polynomials
in all the variants, NFS, MNFS, SNFS, we have done the same thing in exTNFS,
MexTNFS and SexTNFS.

The estimation of the norms sizes given in Lemma 1 is central in the analysis
of exTNFS. For completion reasons we generalize this result to arbitrary degrees.

Lemma 2. Let h be an irreducible polynomial over Z of degree η and f be an
irreducible polynomial over Z[ι] of degree κ. Let ι (resp. α) be a root of h (resp.
f) in its number field and set Kf := Q(ι, α). Let A > 0 be a real number and
τ an integer such that 2 ≤ τ ≤ κ. For each i = 0, . . . , κ − 1, let ai(t) ∈ Z[t] be

polynomials of degree ≤ η− 1 with ‖ai‖∞ ≤ A. Put r(t, x) =
∑τ−1
i=0 ai(t)x

i. Then
we have ∣∣NKf/Q(r(ι, α)

)∣∣ < Aηκ‖f‖(τ−1)η∞ ‖h‖(τ+κ−1)(η−1)∞ D(η, κ),

where D(η, κ) =
(
(2κ− 1)(η− 1) + 1

)η/2
(η+ 1)(2κ−1)(η−1)/2

(
(2κ− 1)!η2κ

)η
. The

above formula remains the same when we restrict the coefficients of f to be
integers.

Proof. By abusing the notation, we write f(t, x) :=
∑
i fi(t)x

i with degt(fi) ≤
κ − 1 for f(x) =

∑
i fi(ι)x

i ∈ Z[ι][x]. We write R(t) := Resx
(
A(t, x), f(t, x)

)
and have

NKf/Q(ι)(r(ι, α)) = R(ι).

By Theorem 8 and Theorem 10 in [11], the degree of R(t) is given by (κ+ τ −
1)(η − 1) and

‖R(t)‖∞ ≤ (τ + κ− 1)!ητ+κ−2Aκ‖f‖τ−1∞ .

Then by Theorem 7 in the same article, we have

|NQ(ι)/Q(R(ι))| ≤ (degR+ 1)deg h/2(deg h+ 1)degR/2‖R‖deg h∞ ‖h‖degR∞ .

Combining all together, we obtain the desired result. ut

This result allows to analyze MexTNFS-SS when κ = 1
cp

( logQ
log logQ )3 and cp <

(
√

78/9 + 29/36)
1
3 ≈ 1.21. Indeed, in this case one puts non-linear polynomials

in the diagram, as indicated in Table 4 of [31].
Once again we check when D(η, κ) = LQ(2/3, o(1)) and obtain the condition

ηκ = o(( logQ
log logQ )

2
3 ). The factor ‖h‖(T+κ−1)(η−1)

∞ is also negligible under the same

condition. Hence the overhead is negligible for all range `p > 1/3.
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B Individual Logarithm

Let s ∈ F∗pn = F∗pηκ be an element for which we want to compute the discrete
logarithm. In general, the discrete logarithm of s can be found by following two
steps: smoothing step and special-q descent.

In the smoothing step, the value s is randomized by z := se for random value
e and B1-smoothness of z (for pre-determined value B1 > B) is tested. Then, for
each prime ideal D which is not in the factor base, one finds a linear relation
involving D and other smaller ideals. This step is called special-q descent. We
recursively produce the special-q descent tree, and finally deduce the desired
discrete logarithm.

The complexity of the individual logarithm step differs by polynomial selec-
tion methods. In the following, to fix ideas, we consider only the JLSV2 and
Conjugation methods (exTNFS-JLSV2 and exTNFS-Conj), but similar argument
directly applies to any other polynomial selection method.

Smoothing. For each z ∈ Fpn we compute an element z̄ ∈ Kf = Q(ι, αf ) which
is sent to z when ι is mapped to a root of h in Fpη and αf in a root of f in Fpηκ .
Then we test if NKf/Q(z̄) is B1-smooth and squarefree. Let us discuss how to
compute and what is the size of its norm.

JLSV2 As before, we consider the target field Fpn as an extension field Fpηκ =
Fpη(m) = Fpη [x]/k(x) over Fpη = Fp(ι) = Fp[t]/h(t). For a given z in F∗pn , we

write z =
∑
i zi(ι)m

i, where the coefficients of zi are non-negative intergers
bounded by p. We set

z̄ =

κ−1∑
i=0

zi(ι)α
i
f

and, by Lemma 2 for T = κ, we obtain

|NKf/Q(z̄)| ≤
(
pn(pκ/(D+1))n−η

)1+o(1)
≤ Q2−2/(κ+1)+o(1),

where, in the last inequality, we used the condition that D ≥ κ.

Conjugation In this case, a direct lift would make that z̄ has degree κ instead
of 2κ = degKf , and the coefficients zi(t) have norm bounded by p. In order to
“spread” the coefficients, i.e. compute another polynomial with the same image in
Fpn of degree 2κ and coefficients of norm p1/2, we need to use the LLL algorithm.
With no extra cost we can obtain a further improvement: use the Waterloo
improvement which consists in replacing the smoothness condition of integers of
a given size X by the smoothness condition of two integers of size X1/2.

The Waterloo improvement for exTNFS-Conj is as follows: we find two
bivariate polynomials u(t, x) =

∑2κ−1
i=0 ui(t)x

i and v(t, x) =
∑2κ−1
i=0 vi(t)x

i ∈
Z[t, x] such that z is the image in Fpn of
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z̄ :=
u(ι, αf )

v(ι, αf )

where ‖ui‖∞,‖vj‖∞ ≤ 2np1/4. For this we LLL-reduce the lattice of dimension
4n defined by the lines of the matrix

L =



p
. . .

p
vec(k)

. . .

vec(k)
vec(z mod (h, f)) 1

...
. . .

vec(tixjz mod (h, f))
. . .

...
. . .

vec(tη−1x2κ−1z mod (h, f)) 1


the first n rows contain only the diagonal coefficient equal to p and where, for
all bivariate polynomial w(t, x) =

∑2κ−1
i=0 wi(t)x

i with wi(t) =
∑η−1
j=0 wi,jt

η−1−j ,
vec(w) = (w0,0, . . . , w0,η−1, . . . , w2κ−1,0, . . . , w2κ−1,η−1) of dimension 2n. In par-
ticular, k ∈ Fpη [x] has been seen as a two-variate polynomial.

By dividing if necessary by the leading coefficient, we can assume that k(x) is
monic, hence the right-most coordinate of vec(k) is 1. Then detL = pn and we

have u, v with ‖ui‖∞, ‖vj‖∞ ≤ 2(4n−1)/4Q
1
4n ≤ 2nQ

1
4n . By Lemma 2 we obtain

that

|NKf/Q(u(ι, αf ))NKf/Q(v(ι, αf ))| ≤ 2n
2

Q
(
‖f‖(2κ−1)η∞ ‖h‖(3κ−1)∞ (η − 1)D(η, 2κ)

)2
.

The term in the later bracket is LQ(2/3, o(1)) and 2n
2

is negligible compared to
Q if and only if `p > 1/2. We conclude that when `p > 1/2

|NKf/Q(u(ι, αf ))NKf/Q(v(ι, αf ))| = Q1+o(1).

Once the lift z̄ has been computed, the smoothing step is carried out as
usual: one tests that the norm of z̄ (or u and v) is squarefree and B1-smooth
where B1 = LQ(2/3, β1) for some constant β1 > 0. We recognize the complexity
analysis done in [15] in the case of prime fields: the complexity of the smoothing
step is LQ(1/3, csmooth) with

– csmooth = 6
1
3 for exTNFS-JLSV2;

– csmooth = 3
1
3 for exTNFS-Conj.
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Descent by special-q Recall how the special-q descent is done in the large
characteristic case of NFS (for example NFS-JLSV2). Due to the condition that
NKf/Q(z̄) is squarefree the ideal generated by z̄ factors only into prime ideals of
degree 1. For a prime ideal q of degree 1 in Kf that appears in the factorization
of the principal ideal (z̄), we write the logarithm of q as a formal sum of virtual
logarithms of ideals in Kf and Kg of norm less than N(q)c for a constant c < 1.
For this, we enumerate pairs (a, b) ∈ Z× Z such that q divides (a− bαf ) to find
one pair such that

– (a− bαf )/q factors into prime ideals of norm less than N(q)c, and

– the ideal (a− bαg) factors into prime ideals of norm less than N(q)c.

To do this we find two pairs (a(1), b(1)) and (a(2), b(2)) of euclidean norm less

than a constant times N(q)
1
2 , using LLL. Then we enumerate the pairs i1 + i2 for

all rational integers with |i1|, |i2| ≤ E′. The complexity of the descent is mainly
determined by the size of the norms:

|NKf/Q(a− bαf )| ≤
(
(E′)κN(D)κ/2Q1/(D+1)

)1+o(1)
,

|NKg/Q(a− bαg)| ≤
(
(E′)DN(D)D/2Q1/(D+1)

)1+o(1)
.

In our two cases, exTNFS-JLSV2 and exTNFS-Conj, we enumerate a(ι), b(ι) ∈
R ⊂ Q(ι) where a(t), b(t) ∈ Z[x] of degree ≤ η − 1 and ‖a‖∞, ‖b‖∞ ≤ (E′)

1
η

so that a(ι)− b(ι)αf ≡ 0 mod q. This can be done in the following manner (cf
Appendix 7.1 in [7]). First, we construct the lattice

L(q) := {(a, b) = (a0, . . . , aη−1, b0, . . . , bη−1) ∈ Z2η : a(ι)− b(ι)αf ≡ 0 mod q},

which has determinant N(q). Let (a(k), b(k)), k = 1, 2, . . . , 2η, be the LLL-reduced
basis of this lattice. Then we test the above smoothness conditions for pairs
(a, b) =

∑2η
k=1 ik(a(k), b(k)), where ik are rational integers with absolute value

less than I := (E′)
1
η . By Lemma 1, in the case of exTNFS-JLSV2 the size of the

norms is

|NKf/Q(a− bαf )| ≤
(
(E′)κN(q)κ/2Q1/(D+1)

)1+o(1)
,

|NKg/Q(a− bαg)| ≤
(
(E′)DN(q)D/2Q1/(D+1)

)1+o(1)
.

Then, the rest of the analysis is similar to that of Chapter 7.3. in [3] and we
conclude that in exTNFS-JLSV2 the special-q descent is negligible compared to
the smoothing step.

In the case of exTNFS-Conj, we use again Lemma 1 and obtain:

|NKf/Q(a− bαf )| ≤
(
(E′)2κN(q)κ

)1+o(1)
,

|NKg/Q(a− bαg)| ≤
(
(E′)κN(q)κ/2Q1/(2κ)

)1+o(1)
.
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We make an usual heuristic argument that a number x is y-smooth with the
probability of ρ(log x/ log y) for Dickman function ρ. So, the probability of the
pair (a, b) to be descended is given by

Prob[(a, b) descends] ≥ ρ
(

3κ logE′ + (3κ/2) log ν + (1/(2κ)) logQ

c log ν

)1+o(1)

,

(11)
where ν := N(q).

In the case when ν is large, i.e. ν = LQ(2/3, β1), where β1 is imposed
by the smoothing step described above, the inverse of the probability can be
approximated by

ρ
(3κ

2c

)−1+o(1)
= LQ

(
1

3
,
cκ
2c

)1+o(1)

,

where cκ = κ/( logQ
log logQ )

1
3 = 12−

1
3 . Multiplying this by the time for νc-smoothness

test the total cost becomes

LQ

(
1/3,

cκ
2c

+ 2

√
cβ1
3

)1+o(1)

.

This value is minimized by LQ(1/3, (9β1cκ/2)1/3) when c =
(

3c2κ
4β1

)1/3
. When we

use that β1 = (1/3)1/3 and cκ = 12−
1
3 , we deduce the complexity

LQ
(
1/3, (81/32)

1
9

)
that is less than the complexity of the smoothing step.

In the case of small ν, i.e. ν = LQ(1/3), the hardest descent step corresponds
to the case when νc = B (the smoothness bound for the factor base). In this
case, again by Equation (11), we have the probability of the descent,

LQ

(
1/3,

cκ
2c

+
cκε

β
+

1

6cκβ

)−1+o(1)
.

The complexity is minimized when the size of sieving space equals to the inverse
of the above probability. This translates to

2ε =
cκ
2c

+
cκε

β
+

1

6cκβ
.

This shows that the optimal value for c can be any value close but not equal
to 1, e.g. c = 0.999, and the optimal complexity of descent step for small ν is
LQ(1/3, 2ε) where

ε =

(
cκ
2

+
1

6βcκ

)/(
2− cκ

β

)
= 12−1/3 ≈ 0.44,

where we used β = (2/3)1/3 and cκ = 12−1/3. This complexity is negligible to
the smoothing step.
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algorithm
rels collection
+lin. algebra

smoothing
special-q
descent

extra
conditions

exTNFS-JLSV2 (64/9)
1
3 (54/9)

1
3 negligible -

exTNFS-Conj (48/9)
1
3 (27/9)

1
3 negligible `p > 1/2

Table 7: Complexity of individual logarithm

For medium ν, i.e. ν = LQ(`) with 1/3 < ` < 2/3, it is obviously faster
than the case of large ν. So, we omit detailed analysis for this case and refer to
Chapter 7.3. in [3].

We conclude this section of the Appendix with a summary of our results in
Table 7.

References

1. K. Aoki, J. Franke, T. Kleinjung, A. K. Lenstra, and D. A. Osvik. A kilobit special
number field sieve factorization. In Advances in Cryptology – ASIACRYPT 2007,
volume 4833 of Lecture Notes in Comput. Sci., pages 1–12, 2007.

2. D. F. Aranha, L. Fuentes-Castaneda, E. Knapp, A. Menezes, and F. Rodrıguez-
Henrıquez. Implementing pairings at the 192-bit security level. In Pairing-Based
Cryptography – Pairing 2012, volume 7708 of Lecture Notes in Comput. Sci., page
177, 2012.

3. R. Barbulescu. Algorithms of discrete logarithm in finite fields. Phd thesis, Université
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