
Gas Schedule Proposal

Overview

Based on the current research, we propose a new gas cost schedule for the Ethereum Virtual Machine (EVM). The current gas

schedule is based on the original yellow paper and has rarely been updated since the launch of the Ethereum mainnet. The

current gas schedule has several issues that have been identified in the research. The proposed gas schedules aim to address

these issues and provide a more accurate representation of the computational cost of EVM operations.

While the measurements in the Stage IV report are based on solid research, the proposed gas cost schedule is more subjective.

This is why we propose two different gas schedules: a conservative one and a radical one. Each has pros and cons.

Conservative Gas Schedule Proposal

The idea behind the conservative gas schedule is to limit changes only to the most mispriced elements. By doing so, we aim to

minimize the impact on the existing ecosystem while still improving security. This should also be easier to implement, as it

requires fewer changes to the existing codebases in EVM clients.

The opcodes proposed for change are those that have been identified to be mispriced during the research.

Opcode Name Current Gas Proposed Gas

08 MULMOD * 8 14

0A EXP 10 + 50 * exponent_byte_size 10 + 20 * exponent_byte_size

20 KECCAK256 *
30 + 6 * minimum_word_size +

memory_expansion_cost

50 + 30 * minimum_word_size +

memory_expansion_cost

30 ADDRESS * 2 5

33 CALLER * 2 5

37 CALLDATACOPY *
3 + 3 * minimum_word_size +

memory_expansion_cost

5 + 3 * minimum_word_size +

memory_expansion_cost

39 CODECOPY *
3 + 3 * minimum_word_size +

memory_expansion_cost

5 + 3 * minimum_word_size +

memory_expansion_cost

3E
RETURNDATACOPY

*

3 + 3 * minimum_word_size +

memory_expansion_cost

5 + 3 * minimum_word_size +

memory_expansion_cost

52 MSTORE * 3 + memory_expansion_cost 5 + memory_expansion_cost

53 MSTORE8 * 3 + memory_expansion_cost 5 + memory_expansion_cost

60 - 7F PUSHx 3 2

80 - 8F DUPx 3 2

90 - 9F SWAPx 3 2

file:///c:/dev/imapp/gas-cost-estimator/docs/report_stage_iv.md
file:///c:/dev/imapp/gas-cost-estimator/docs/report_stage_iv.md
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf

Opcode Name Current Gas Proposed Gas

56 JUMP 8 3

57 JUMPI 10 5

5C TLOAD 100 20

5D TSTORE 100 50

A0 LOG0
375 + 375 * topic_count + 8 * data_size +

memory_expansion_cost

35 + 35 * topic_count + 8 * data_size +

memory_expansion_cost

A1 LOG1
375 + 375 * topic_count + 8 * data_size +

memory_expansion_cost

35 + 35 * topic_count + 8 * data_size +

memory_expansion_cost

A2 LOG2
375 + 375 * topic_count + 8 * data_size +

memory_expansion_cost

35 + 35 * topic_count + 8 * data_size +

memory_expansion_cost

A3 LOG3
375 + 375 * topic_count + 8 * data_size +

memory_expansion_cost

35 + 35 * topic_count + 8 * data_size +

memory_expansion_cost

A4 LOG4
375 + 375 * topic_count + 8 * data_size +

memory_expansion_cost

35 + 35 * topic_count + 8 * data_size +

memory_expansion_cost

F1 CALL *
address_access_cost: 100 (warm) / 2600

(cold)

address_access_cost: 150 (warm) /

2600 (cold)

F4 DELEGATECALL *
address_access_cost: 100 (warm) / 2600

(cold)

address_access_cost: 150 (warm) /

2600 (cold)

FA STATICCALL *
address_access_cost: 100 (warm) / 2600

(cold)

address_access_cost: 150 (warm) /

2600 (cold)

F3 RETURN * 0 + memory_expansion_cost 5 + memory_expansion_cost

FD REVERT * 0 + memory_expansion_cost 8 + memory_expansion_cost

Precompile Name Current Gas Proposed Gas

01 ECRECOVER * 3000 12000

06 ECADD * 150 3000

07 ECMUL * 6000 10000

0A POINTEVAL * 50000 300000

The * indicates increased gas cost for the given opcode or precompile. This should be implemented with caution as it might

break backward compatibility.

The current cost for the memory_expansion_cost is calculated as quadratical_cost + 3 * memory_word_count . We propose to

change it to quadratical_cost + 2 * memory_word_count as the results indicate that memory expansion costs are quite low.

Radical Gas Schedule Proposal

The idea behind the radical gas schedule proposal is a complete overhaul of the current gas schedule. Rather than just

addressing the most mispriced opcodes, we propose altering all opcodes to better reflect the computational cost of the

operations.

Let's run through the consequences of the radical gas schedule proposal. The cheapest operations are priced at 1. Then we

gradually adjust the gas cost for more complex operations. As a result, most arithmetic and basic opcodes will be much cheaper,

i.e., valued at 1 rather than 3 or 5. Then all other operations will be adjusted accordingly, usually by lowering the gas cost. This

matches some of the sentiments in the community.

Client Implementation notes:

Such a radical change to the gas schedule would require a fully configurable schedule in EVM clients. This would allow

clients to easily switch between different gas schedules, but also different chains.

In this scenario, the storage cost remains at the same level as this reflects the network cost of storing data. Thus the radical gas

schedule proposal increases the disparity between the cost of storage and computation. This is a good thing as it makes it more

expensive to store data than to compute it. The memory expansion cost is lowered but still keeps its characteristic of being

quadratic, thus improving network security.

Pros:

• The gas cost reflects the computational cost of the operations

• The larger gap between the cost of storage and computation promotes more efficient use of the network

• Configurable gas schedules allow for simpler updates in the future

• Configurable gas schedules can better match L2 chain requirements

Cons:

• EVM Clients need to implement configurable gas schedules

• The radical changes may lead to unforeseen issues or challenges

The radical gas schedule was derived by rescaling the calculated gas costs from the research. The rescale factor is the key to

achieving the desired effect. For this purpose, we took an average of the basic arithmetic opcodes. In this proposal, the rescale

factor is 1/4.6 = 0.217391304 .

The tables below contain the additional Rescaled Fractional column. This shows the actual gas cost of the opcode after

rescaling. It could be useful for further discussion on the proposed Fractional Gas Costs schedule.

Opcode Name Current Gas
Rescaled

Fractional
Proposed Gas

01 ADD 3 0.5 1

02 MUL 5 1.1 1

03 SUB 3 0.6 1

04 DIV 5 0.9 1

05 SDIV 5 1.4 1

06 MOD 5 1.0 1

07 SMOD 5 1.5 1

https://x.com/VitalikButerin/status/1849338545498210652
https://x.com/VitalikButerin/status/1849338545498210652

Opcode Name Current Gas
Rescaled

Fractional
Proposed Gas

08 ADDMOD 8 1.8 2

09 MULMOD 8 3.0 3

0A EXP 10 + 50 * exponent_byte_size 2 + 4 * exponent_byte_size

0B SIGNEXTEND 5 1.1 1

10 LT 3 0.5 1

11 GT 3 0.6 1

12 SLT 3 0.7 1

13 SGT 3 0.7 1

14 EQ 3 0.6 1

15 ISZERO 3 0.4 1

16 AND 3 0.5 1

17 OR 3 0.6 1

18 XOR 3 0.6 1

19 NOT 3 0.4 1

1A BYTE 3 0.6 1

1B SHL 3 1.2 1

1C SHR 3 0.9 1

1D SAR 3 1.4 1

20 KECCAK256
30 + 6 * data_word_size +

memory_expansion_cost

10 + 6 * data_word_size +

memory_expansion_cost

30 ADDRESS 2 1.1 1

32 ORIGIN 2 0.5 1

33 CALLER 2 1.0 1

34 CALLVALUE 2 0.4 1

35 CALLDATALOAD 3 0.7 1

36 CALLDATASIZE 2 0.4 1

37 CALLDATACOPY
3 + 3 * data_word_size +

memory_expansion_cost

1 + 1 * data_word_size +

memory_expansion_cost

38 CODESIZE 2 0.5 1

39 CODECOPY
3 + 3 * data_word_size +

memory_expansion_cost

1 + 1 * data_word_size +

memory_expansion_cost

Opcode Name Current Gas
Rescaled

Fractional
Proposed Gas

3A GASPRICE 2 0.4 1

3B EXTCODESIZE address_access_cost address_access_cost

3C EXTCODECOPY

0 + 3 * data_word_size +

memory_expansion_cost +

address_access_cost

0 + 1 * data_word_size +

memory_expansion_cost +

address_access_cost

3D RETURNDATASIZE 2 0.5 1

3E RETURNDATACOPY
3 + 3 * data_word_size +

memory_expansion_cost

1 + 1 * data_word_size +

memory_expansion_cost

3F EXTCODEHASH address_access_cost address_access_cost

41 COINBASE 2 0.6 1

42 TIMESTAMP 2 0.5 1

43 NUMBER 2 0.5 1

45 GASLIMIT 2 0.4 1

46 CHAINID 2 0.5 1

47 SELFBALANCE 5 1.3 1

50 POP 2 0.4 1

51 MLOAD 3 1.0 1

52 MSTORE 3 + memory_expansion_cost 1 + memory_expansion_cost

53 MSTORE8 3 + memory_expansion_cost 1 + memory_expansion_cost

56 JUMP 8 0.7 1

57 JUMPI 10 1.1 1

58 PC 2 0.4 1

59 MSIZE 2 0.4 1

5A GAS 2 0.4 1

5C TLOAD 100 4.1 4

5D TSTORE 100 10.0 10

5B JUMPDEST 1 0.3 1

5E MCOPY
3 + 3 * data_word_size +

memory_expansion_cost

1 + 1 * data_word_size +

memory_expansion_cost

5F PUSH0 2 0.4 1

60 - 7F PUSHx 3 0.5 1

Opcode Name Current Gas
Rescaled

Fractional
Proposed Gas

80 - 8F DUPx 3 0.3 1

90 - 9F SWAPx 3 0.5 1

A0 LOG0

375 + 375 * topic_count + 8 *

data_size +

memory_expansion_cost

7 + 7 * topic_count + 8 * data_size

+ memory_expansion_cost

A1 LOG1

375 + 375 * topic_count + 8 *

data_size +

memory_expansion_cost

7 + 7 * topic_count + 8 * data_size

+ memory_expansion_cost

A2 LOG2

375 + 375 * topic_count + 8 *

data_size +

memory_expansion_cost

7 + 7 * topic_count + 8 * data_size

+ memory_expansion_cost

A3 LOG3

375 + 375 * topic_count + 8 *

data_size +

memory_expansion_cost

7 + 7 * topic_count + 8 * data_size

+ memory_expansion_cost

A4 LOG4

375 + 375 * topic_count + 8 *

data_size +

memory_expansion_cost

7 + 7 * topic_count + 8 * data_size

+ memory_expansion_cost

F0 CREATE

32000 + 2 * data_word_size +

memory_expansion_cost +

deployment_code_execution_cost

+ 200 * deployed_code_size

32000 + 1 * data_word_size +

memory_expansion_cost +

deployment_code_execution_cost

+ 40 * deployed_code_size

F5 CREATE2

32000 + 2 * data_word_size + 6 *

data_word_size +

memory_expansion_cost +

deployment_code_execution_cost

+ 200 * deployed_code_size

32000 + 1 * data_word_size + 1 *

data_word_size +

memory_expansion_cost +

deployment_code_execution_cost

+ 40 * deployed_code_size

F1 CALL

0 + memory_expansion_cost +

code_execution_cost +

address_access_cost +

positive_value_cost +

value_to_empty_account_cost

0 + memory_expansion_cost +

code_execution_cost +

address_access_cost +

positive_value_cost +

value_to_empty_account_cost

FA STATICCALL

0 + memory_expansion_cost +

code_execution_cost +

address_access_cost

0 + memory_expansion_cost +

code_execution_cost +

address_access_cost

F4 DELEGATECALL

0 + memory_expansion_cost +

code_execution_cost +

address_access_cost

0 + memory_expansion_cost +

code_execution_cost +

address_access_cost

F3 RETURN ¹ 0 + memory_expansion_cost 0 + memory_expansion_cost

Opcode Name Current Gas
Rescaled

Fractional
Proposed Gas

FD REVERT ² 0 + memory_expansion_cost 0 + memory_expansion_cost

¹ The calculated gas costs for RETURN is 1 + memory_expansion_cost . To avoid price increase this is kept at the current

level and needs to be subsidized by the network.

² The calculated gas costs for REVERT is 2 + memory_expansion_cost . To avoid price increase this is kept at the current

level and needs to be subsidized by the network.

Precompile Name Current Gas Rescaled Fractional Proposed Gas

01 ECRECOVER ³ 3000 3246.7 3000

02 SHA2-256 60 + 12 * data_word_size 10 + 4 * data_word_size

03 RIPEMD-160 600 + 120 * data_word_size 60 + 40 * data_word_size

04 IDENTITY 15 + 3 * data_word_size 15 + 3 * data_word_size

05 MODEXP 0 + max(200, complexity_cost) 0 + max(70, complexity_cost)

06 ECADD ³ 150 694.6 150

07 ECMUL 6000 2677.7 2700

08 ECPAIRING 45000 + 34000 * sets_count 8000 + 7000 * sets_count

09 BLAKE2F 0 + 1 * rounds_count 0 + 1 * rounds_count

0A POINTEVAL 50000 21242.8 21000

³ The proposed gas is subsidized by the network to keep the cost at the current level.

Also, the following elements of the dynamic gas cost have been adjusted:

Element Current Proposed Notes

memory_expansion_cost
(memory_size_word ** 2) /

512 + (3 * memory_size_word)

(memory_size_word ** 2) /

512

This means that the first

22 words of memory are

free. Then the cost grows

quadratically.

address_access_cost 100 (warm) | 2600 (cold) 5 (warm) | 2600 (cold)

MODEXP

complexity_cost

multiplication_complexity *

calculate_iteration_count / 3

multiplication_complexity *

calculate_iteration_count / 30

This is optional, due to the

relatively low popularity of

the MODEXP precompile.

