
Gas Cost Estimator

Stage 4 Report

Abstract

In this stage, we use the findings from the previous stages and apply them to produce a

comprehensive analysis of the gas cost. The improved methodology incorporates standardized

benchmarks, data analysis, and report generation. The scope has been extended to all OPCODEs,

precompiles, and 7 popular EVM implementations with different technological stacks and

architectures. The reproducibility of the results has been improved by providing a complete setup

guide and tooling. Cooperation with the EVM implementers and the broader community allowed us to

create benchmark tools with similar functionality for all EVM implementations. Where possible, our

benchmarks are integrated into the EVM implementations' code base. This future-proofs the research

and gives more confidence in the results. Additionally, the release package contains precompiled

binaries for even easier execution. The result of this stage is a new Gas Cost Schedule to be

proposed for the next hard fork.

Introduction and project scope

This project continues the previous stages of the Gas Cost Estimator. Please visit https://github.com/

imapp-pl/gas-cost-estimator to find more information. After publishing our report from the second and

third stages of the Gas Cost Estimator project, we received feedback from the community. The

community expressed the need to see other implementations being included in the research as well

as to have the tooling automated and the benchmarks standardized.

EVM Implementations

The following EVM implementations have been included in the research:

• EvmOne, version 0.13.0, commit 492e513

• Go Ethereum, version Rayingri (v1.14.12), commit a9523b6

• Erigon, version 2.60.10, commit d24e5d4

• EthereumJS, version 8.1.1, commit db8c0db

• Nethermind, version 1.29.1, commit e65c1cd

https://github.com/imapp-pl/gas-cost-estimator
https://github.com/imapp-pl/gas-cost-estimator
https://github.com/imapp-pl/gas-cost-estimator
https://github.com/imapp-pl/gas-cost-estimator
https://github.com/JacekGlen/evmone
https://github.com/JacekGlen/evmone
https://github.com/JacekGlen/evmone/commit/492e513a7d1cd905c6c45cf17d830fc8dc13288b
https://github.com/JacekGlen/evmone/commit/492e513a7d1cd905c6c45cf17d830fc8dc13288b
https://github.com/ethereum/go-ethereum
https://github.com/ethereum/go-ethereum
https://github.com/ethereum/go-ethereum/commit/a9523b6428238a762e1a1e55e46ead47630c3a23
https://github.com/ethereum/go-ethereum/commit/a9523b6428238a762e1a1e55e46ead47630c3a23
https://github.com/erigontech/erigon
https://github.com/erigontech/erigon
https://github.com/erigontech/erigon/commit/d24e5d45755d7b23075c507ad9216e1d60ad03de
https://github.com/erigontech/erigon/commit/d24e5d45755d7b23075c507ad9216e1d60ad03de
https://github.com/imapp-pl/ethereumjs-monorepo
https://github.com/imapp-pl/ethereumjs-monorepo
https://github.com/imapp-pl/ethereumjs-monorepo/commit/db8c0dbe76b366edae7b609960bd99ff00e10cf7
https://github.com/imapp-pl/ethereumjs-monorepo/commit/db8c0dbe76b366edae7b609960bd99ff00e10cf7
https://github.com/imapp-pl/nethermind
https://github.com/imapp-pl/nethermind
https://github.com/imapp-pl/nethermind/commit/e65c1cd59d858e3add8203d1bc21ec1c1f38de5b
https://github.com/imapp-pl/nethermind/commit/e65c1cd59d858e3add8203d1bc21ec1c1f38de5b

• Revm, version 18.0.0, commit d82c762

• Besu, version 24.10.0, commit d061dfa

Measured OPCODEs and precompiles

In this stage, we measure all OPCODEs together with the precompiles.

Tooling and automation

Reproducibility is key to the research. We have provided a complete setup guide and tooling to make

the execution of the benchmarks as easy as possible. There are two ways to perform the

measurements in the environment. The first one is to use the provided scripts to build the EVM

implementations and run the benchmarks. The second one is to use the provided release with

precompiled binaries. The binaries are available for Linux x64, MacOS x64, and Windows.

Methodology

Measurement approach

Our approach is to test each EVM implementation in isolation. That means that any host objects,

storage access, and other infrastructure elements are either mocked or a minimal implementation is

used. Additionally, each measured transaction contains bytecode to execute, which is a sequence of

different instructions plus x times the OPCODE to measure. By varying the number of OPCODEs in

the bytecode, we can estimate the cost of executing a single OPCODE. For that reason, larger

bytecode programs are executed and OPCODEs costs are estimated using statistical tools. The

measurements are performed multiple times to ensure the results are consistent.

We have created benchmarking code for all EVM implementations that execute the OPCODEs in a

controlled environment. We used standard benchmarking libraries for each language and framework.

Factors impacting the results

Research and experiments in previous stages have shown the importance of removing uncontrollable

and variable factors when estimating the cost of executing any given OPCODE. This includes:

• Caching on various levels, from processor to operating system to disk to EVM implementation

• Processor and hardware architecture

• Warm-up effect

https://github.com/imapp-pl/revm
https://github.com/imapp-pl/revm
https://github.com/imapp-pl/revm/commit/d82c7621d7256d8067e97845411c68a3e1d6ef57
https://github.com/imapp-pl/revm/commit/d82c7621d7256d8067e97845411c68a3e1d6ef57
https://github.com/lukasz-glen/besu
https://github.com/lukasz-glen/besu
https://github.com/lukasz-glen/besu/commit/d061dfa0d574fe2d4b4be4b0e61b8d11ce1501ee
https://github.com/lukasz-glen/besu/commit/d061dfa0d574fe2d4b4be4b0e61b8d11ce1501ee

• Operating System performance optimizations, pre-loading frameworks and libraries

• Operating System process priority and multithreading

• Garbage Collector impact

• Virtualization impact

• Node synchronization and data model impact

The benchmark approach used for the measurement sufficiently mitigates the impact of these factors.

The benchmarking code is designed to be as simple as possible, with minimal dependencies. It is

executed in a controlled environment, with no other processes running, and multiple times to ensure

consistency.

Environment setup

For all the measurements, we used a reference machine with the following specifications:

• Intel® Core™ i5-13500

• 64 GB DDR4

• 2 x 512 GB NVMe SSD

• Ubuntu 22.04

The provided Python script makes it easy to run the benchmarks and collect the results:

python3 ./src/instrumentation_measurement/measurements.py measure --input_file ./src/stage4/pg_marginal_full5_c50

Where evm_name is the name of the EVM implementation you want to measure.

EVM Implementations Details

In this chapter, we describe the benchmarking approach for individual EVM implementations.

EvmOne

EvmOne is a reference EVM implementation written in C++. We used the Google Benchmark library

for benchmarking.

Go Ethereum

Go Ethereum is the most popular EVM implementation. It is written in Go. For our measurements, we

expanded the cmd/evm tool available in Geth. It uses Go's testing library for benchmarking. We

used an in-memory database for minimal impact with a minimal host.

Erigon

Erigon is another EVM implementation written in Go. It has a similar evm tool as Go Ethereum that

was harnessed for the benchmarks.

EthereumJS

EthereumJS is written in TypeScript and executed in the NodeJS environment. No existing tool was

available for benchmarking, so we created a new one. The code is available at https://github.com/

imapp-pl/ethereumjs-monorepo/blob/benchmark-bytecode-execution/packages/vm/benchmarks/

bytecode.ts. It uses the tinybench library for benchmarking. The EVM engine is contained in the

@ethereumjs/evm library. The state is cleared on every benchmark run.

Nethermind

Nethermind is developed in the .NET framework using C# language. The existing benchmark did not

satisfy our requirements, so we created a new one. The source code is available at https://

github.com/imapp-pl/nethermind/blob/benchmark-bytecode-execution/src/Nethermind/

Nethermind.Benchmark.Runner/BytecodeBenchmark.cs. The improvements include:

• bytecode provided as a command-line parameter

• setup and teardown methods for each benchmark that do not affect the measurement

• exception handling

Revm

Revm is developed in Rust. The existing revme tool did not satisfy our requirements, so we extended

it. The source code is available at https://github.com/imapp-pl/revm/blob/benchmark-bytecode-

execution/bins/revme/src/cmd/evmrunner.rs. The improvements include:

• use criterion rather than microbench for the benchmarking library, which provides more stable

results

• bytecode provided as a command-line parameter

• setup and teardown methods for each benchmark that do not affect the measurement

Besu

file:///c:/dev/imapp/gas-cost-estimator/docs
file:///c:/dev/imapp/gas-cost-estimator/docs
file:///c:/dev/imapp/gas-cost-estimator/docs
file:///c:/dev/imapp/gas-cost-estimator/docs
file:///c:/dev/imapp/gas-cost-estimator/docs
file:///c:/dev/imapp/gas-cost-estimator/docs
file:///c:/dev/imapp/gas-cost-estimator/docs
file:///c:/dev/imapp/gas-cost-estimator/docs
file:///c:/dev/imapp/gas-cost-estimator/docs
file:///c:/dev/imapp/gas-cost-estimator/docs
file:///c:/dev/imapp/gas-cost-estimator/docs
file:///c:/dev/imapp/gas-cost-estimator/docs
file:///c:/dev/imapp/gas-cost-estimator/docs
file:///c:/dev/imapp/gas-cost-estimator/docs
file:///c:/dev/imapp/gas-cost-estimator/docs
file:///c:/dev/imapp/gas-cost-estimator/docs

Besu is developed in Java.

TODO: LG provide benchmarking tool used for Java

Measurement Analysis

The full list of bytecode instructions used for the measurements is available in the following files:

• arithmetic and others

• memory

• create

• stop

• transient

• precompiles

The full results of the measurements are available in the reports directory.

Figure: All Clients arithmetic OPCODEs comparison

file:///c:/dev/imapp/gas-cost-estimator/src/stage4/pg_marginal_full_step5.csv
file:///c:/dev/imapp/gas-cost-estimator/src/stage4/pg_marginal_full_step5.csv
file:///c:/dev/imapp/gas-cost-estimator/src/stage4/pg_marginal_mem.csv
file:///c:/dev/imapp/gas-cost-estimator/src/stage4/pg_marginal_mem.csv
file:///c:/dev/imapp/gas-cost-estimator/src/stage4/pg_marginal_create.csv
file:///c:/dev/imapp/gas-cost-estimator/src/stage4/pg_marginal_create.csv
file:///c:/dev/imapp/gas-cost-estimator/src/stage4/pg_marginal_stop.csv
file:///c:/dev/imapp/gas-cost-estimator/src/stage4/pg_marginal_stop.csv
file:///c:/dev/imapp/gas-cost-estimator/src/stage4/pg_marginal_t.csv
file:///c:/dev/imapp/gas-cost-estimator/src/stage4/pg_marginal_t.csv
file:///c:/dev/imapp/gas-cost-estimator/src/stage4/pg_precompiles_full_step5.csv
file:///c:/dev/imapp/gas-cost-estimator/src/stage4/pg_precompiles_full_step5.csv
file:///c:/dev/imapp/gas-cost-estimator/docs/reports
file:///c:/dev/imapp/gas-cost-estimator/docs/reports

Figure: All Clients stack OPCODEs comparison

Figure: All Clients precompiles comparison

OPCODEs Details

Arithmetic and Logical Operations

Included OPCODEs: ADD , MUL , SUB , DIV , SDIV , MOD , SMOD , ADDMOD , MULMOD , EXP , SIGNEXTEND ,

LT , GT , SLT , SGT , EQ , ISZERO , AND , OR , XOR , NOT , BYTE , SHL , SHR , SAR

Most opcodes are implemented similarly across all EVM implementations and their cost matches the

nominal gas value. The few exceptions are:

• EXP : The dynamic cost element is clearly lower than the nominal 50 per exponent byte.

• MULMOD : Is not the same complexity as ADDMOD and its cost should reflect that.

• SHL , SHR , SAR : The cost of these opcodes is higher than the nominal 3 gas.

Client Implementation notes:

Both MULMOD and EXP show a significant difference in the cost between clients. Specific teams

should investigate the cost of these opcodes in their implementations.

The cost of SHL , SHR , SAR is much higher than intuitively expected. All teams should

investigate.

Stack Operations

Included OPCODEs: POP , PUSH* , DUP* , SWAP*

The cost of stack operations is fairly consistent and is slightly below the nominal gas value.

Client Implementation notes:

Both Besu and EthereumJS should review their PUSH* implementations. The cost rises linearly

with the number of bytes pushed, which defies intuition and is different from other

implementations.

Memory Operations

Included OPCODEs: MLOAD , MSTORE , MSTORE8 , MSIZE , MCOPY

The cost of storing and loading data from memory is higher than the nominal and it should be

reflected in the proposed gas cost schedule. The measurement results confirm that the memory

expansion cost is real and is priced accordingly.

Client Implementation notes:

The memory operations are supposed to be lightweight, but our measurements show that they

are not. As these are some of the most common operations in smart contracts, all teams should

strive to optimize them.

Call, Call Control, and Call Data

Included OPCODEs: CALLVALUE , CALLDATALOAD , CALLDATASIZE , CALLDATACOPY , RETURNDATASIZE ,

RETURNDATACOPY , CALL , STATICCALL , DELEGATECALL , RETURN , REVERT

Our measurements show significant differences between the nominal gas cost and the actual cost of

these opcodes. There are two groups of opcodes:

• CALL , STATICCALL , DELEGATECALL : These are more expensive than the nominal cost.

• CALLDATACOPY , RETURNDATACOPY , RETURN , and REVERT : The cost is higher than the nominal, even

including the memory expansion cost. The base cost should be adjusted to reflect the actual

cost.

Client Implementation notes:

The measured cost of CALL , STATICCALL , DELEGATECALL opcodes indicates that creating a

subcontext is more expensive than expected. Except for Revm, all implementation teams should

investigate these costs.

Environment Information

Included OPCODEs: ADDRESS , ORIGIN , CALLER , CODESIZE , CODECOPY , GASPRICE , COINBASE ,

TIMESTAMP , NUMBER , DIFFICULTY , GASLIMIT , CHAINID , GAS , EXTCODEHASH , EXTCODESIZE ,

EXTCODECOPY

The cost of these opcodes usually matches the nominal gas value, with some notable exceptions:

• ADDRESS and CALLER : The cost is higher than the nominal.

• EXTCODESIZE , EXTCODECOPY , EXTCODEHASH : The cost of accessing warm addresses is much lower

than the nominal.

Client Implementation notes:

The ADDRESS and CALLER opcodes might not be the most used ones, but still, it is worth

investigating the implementation. The teams behind Geth, Erigon, EthereumJS, Besu, and

EvmOne should investigate if there is room for optimization.

Logs

Included OPCODEs: LOG0 , LOG1 , LOG2 , LOG3 , LOG4

Logs are difficult to measure, as our methodology does not cover the network cost of storing logs.

The results do confirm that the cost increases with the number of topics though. Also, we can

consider lowering the base cost for topics.

Client Implementation notes:

Although not a top priority, Erigon could investigate the cost of logs.

Jumps

Included OPCODEs: JUMP , JUMPI , PC , JUMPDEST

Overall, the cost of jumps is lower than the nominal. We should consider lowering the gas of JUMP

and JUMPI opcodes.

Client Implementation notes:

Nethermind, Geth, and Erigon jumps seem to be more expensive than the other

implementations. The teams behind these implementations should investigate the cost of jumps.

Transient Storage

Included OPCODEs: TLOAD , TSTORE

The measurements show that the cost of transient storage is lower than the nominal. When updating

the cost, we should consider the security implications - too low cost may be a vector for attacks.

Client Implementation notes:

The Geth team should investigate the cost of transient storage.

Creates

Included OPCODEs: CREATE , CREATE2

The main factor in the cost of creating a contract is the network storage cost. Thus it is difficult to

measure the computational cost of these opcodes. The cost of CREATE and CREATE2 should remain

at the current level.

Other

Included OPCODEs: SELFBALANCE , KECCAK256

The SELFBALANCE is a rather simple opcode and it is reflected in the measured cost. We should lower

the nominal cost of this opcode.

The KECCAK256 opcode is more expensive than the nominal. Both static costs and dynamic per-word

costs should be adjusted.

Precompiles Details

Elliptic Curve precompiles

Included precompiles: ecRecover , ecAdd , ecMul , ecPairing

Elliptic curve operations have been frequently reported as underpriced. Our measurements confirm

those reports.

While ecPairing is mostly in the range, the other precompiles are significantly more expensive than

the nominal.

Client Implementation notes:

The cost of ecPairing for Geth is extremely high. The team should investigate. Also, other

teams might want to look at the EvmOne implementation, as this is the most optimized.

Point Evaluation

Included precompiles: point evaluation

The cost of point evaluation is higher than the nominal. The cost should be adjusted to reflect the

actual cost.

Other precompiles

Included precompiles: sha2-256 , ripemd160 , identity , modexp , blake2f

These opcodes are mostly in the range, and there is no immediate need for adjustment.

Summary

The results of the measurements can help us identify mispriced opcodes or precompiles. The fact

that most opcodes match the nominal cost is a good indicator that the proposed methodology is

sound. The discrepancies between the nominal and measured costs are a good starting point for the

proposed gas cost schedule.

Tooling and Automation

One of the goals of the project was to provide a complete setup guide and tooling to make the

reproduction of the benchmarks as easy as possible. We provide two ways to perform the

measurements in your environment. The first one is to use the provided scripts to build the EVM

implementations and run the benchmarks. The second one is to use the provided release with

precompiled binaries.

Local build

First, you need to make sure the required environment is set up by executing the following command:

./src/instrumentation_measurement/setup_tools.sh

Then you can build the EVM implementations by executing the following command (long-running

process):

cd src/instrumentation_measurement

./setup_clients.sh

Note: executing the script directly from the root directory will not work. Please navigate to the

src/instrumentation_measurement directory first.

Troubleshooting:

• If Besu does not build, try setting the JAVA_HOME environment variable to the path of your JDK

installation. This must be JDK 21 or later.

• If EvmOne does not build, you can try building it with clang (sudo apt install clang) by setting

the CC and CXX environment variables to clang and clang++ respectively.

Release

The release package contains precompiled binaries for all EVM implementations. To run the

benchmarks, you need to download the release package, extract it and execute the following

command:

./measure_full.sh

For a test drive, you can execute simplified benchmarks with the following command:

./measure_test.sh

The scripts above might require some dependencies to be installed. Please refer to the setup guide

for more information.

