非对称加密技术,在现在网络中,有非常广泛应用。加密技术更是数字货币的基础。
所谓非对称,就是指该算法需要一对密钥,使用其中一个(公钥)加密,则需要用另一个(私钥)才能解密。 但是对于其原理大部分同学应该都是一知半解,今天就来分析下经典的非对称加密算法 - RSA算法。 通过本文的分析,可以更好的理解非对称加密原理,可以让我们更好的使用非对称加密技术。
非对称加密技术,在现在网络中,有非常广泛应用。加密技术更是数字货币的基础。
所谓非对称,就是指该算法需要一对密钥,使用其中一个(公钥)加密,则需要用另一个(私钥)才能解密。 但是对于其原理大部分同学应该都是一知半解,今天就来分析下经典的非对称加密算法 - RSA算法。 通过本文的分析,可以更好的理解非对称加密原理,可以让我们更好的使用非对称加密技术。
题外话: 本博客一直有打算写一系列文章通俗的密码学,昨天给站点上https, 因其中使用了RSA算法,就查了一下,发现现在网上介绍RSA算法的文章都写的太难理解了,反正也准备写密码学,就先写RSA算法吧,下面开始正文。
RSA算法的基于这样的数学事实:两个大质数相乘得到的大数难以被因式分解。 如:有很大质数p跟q,很容易算出N,使得 N = p * q, 但给出N, 比较难找p q(没有很好的方式, 只有不停的尝试)
这其实也是单向函数的概念
下面来看看数学演算过程:
选取两个大质数p,q,计算N = p q 及 φ ( N ) = φ (p) φ (q) = (p-1) * (q-1)
三个数学概念: 质数(prime numbe):又称素数,为在大于1的自然数中,除了1和它本身以外不再有其他因数。 互质关系:如果两个正整数,除了1以外,没有其他公因子,我们就称这两个数是互质关系(coprime)。 φ(N):叫做欧拉函数,是指任意给定正整数N,在小于等于N的正整数之中,有多少个与N构成互质关系。
如果n是质数,则 φ(n)=n-1。 如果n可以分解成两个互质的整数之积, φ(n) = φ(p1p2) = φ(p1)φ(p2)。即积的欧拉函数等于各个因子的欧拉函数之积。
选择一个大于1 小于φ(N)的数e,使得 e 和 φ(N)互质
e其实是1和φ(N)之前的一个质数
计算d,使得de=1 mod φ(N) 等价于方程式 ed-1 = k φ(N) 求一组解。
d 称为e的模反元素,e 和 φ(N)互质就肯定存在d。
模反元素是指如果两个正整数a和n互质,那么一定可以找到整数b,使得ab被n除的余数是1,则b称为a的模反元素。 可根据欧拉定理证明模反元素存在,欧拉定理是指若n,a互质,则: a^φ(n) ≡ 1(mod n) 及 a^φ(n) = a * a^(φ(n) - 1), 可得a的 φ(n)-1 次方,就是a的模反元素。
(N, e)封装成公钥,(N, d)封装成私钥。 假设m为明文,加密就是算出密文c: m^e mod N = c (明文m用公钥e加密并和随机数N取余得到密文c) 解密则是: c^d mod N = m (密文c用密钥解密并和随机数N取余得到明文m)
私钥解密这个是可以证明的,这里不展开了。
具体还是来看看步骤,举个例子,假设Alice和Bob又要相互通信。
假如攻击者能截取到公钥n=3127,e=3及密文c=1394,是仍然无法不通过d来进行密文解密的。
那么,有无可能在已知n和e的情况下,推导出d?
1. ed≡1 (mod φ(n))。只有知道e和φ(n),才能算出d。
2. φ(n)=(p-1)(q-1)。只有知道p和q,才能算出φ(n)。
3. n=pq。只有将n因数分解,才能算出p和q。
如果n可以被因数分解,d就可以算出,因此RSA安全性建立在N的因式分解上。大整数的因数分解,是一件非常困难的事情。 只要密钥长度足够长,用RSA加密的信息实际上是不能被解破的。
如果觉得我的文章对您有用,请随意打赏。你的支持将鼓励我继续创作!