深入理解 Uniswap v3 智能合约 - Core(一)

  • adshao
  • 发布于 2024-04-09 17:55
  • 阅读 38

此文详细介绍了 Uniswap v3 的智能合约,包括核心合约 UniswapV3Factory 和 UniswapV3Pool 的实现与功能,重点讲解了流动性管理、交易对创建、代币交换等操作的实现原理和代码示例,涵盖了预言机的使用及其扩展等技术细节,具有很强的实用性和参考价值。

深入理解 Uniswap v3 智能合约 (一)

概述

与Uniswap v2一样,Uniswap v3的合约也分为两类:

  • Uniswap-v3-core
    • Uniswap v3的核心代码,实现了协议定义的所有功能,外部合约可直接与core合约交互
  • Uniswap-v3-periphery
    • 基于使用场景封装接口,如头寸(Position)管理、多路径代币交换等功能,Uniswap界面即与periphery合约交互

如果你希望以用户场景角度阅读本文,请直接从Uniswap-v3-periphery开始,它包含了创建头寸、修改头寸流动性、交换代币等常用功能。

如果你希望从底层核心模块开始阅读,请从Uniswap-v3-core开始。

Uniswap-v3-core

UniswapV3Factory.sol

工厂合约主要包含三个功能:

createPool

创建一个Uniswap v3交易对池子,注意,由于Uniswap v3支持不同手续费等级,如0.05%、0.30%、1.00%等,因此一个交易对合约由tokenAtokenBfee(手续费)唯一确定。

计算交易对合约还需要:factory工厂合约地址、合约初始化代码的hash。

/// @inheritdoc IUniswapV3Factory
function createPool(
    address tokenA,
    address tokenB,
    uint24 fee
) external override noDelegateCall returns (address pool) {
    require(tokenA != tokenB);
    (address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA);
    require(token0 != address(0));
    int24 tickSpacing = feeAmountTickSpacing[fee];
    require(tickSpacing != 0);
    require(getPool[token0][token1][fee] == address(0));
    pool = deploy(address(this), token0, token1, fee, tickSpacing);
    getPool[token0][token1][fee] = pool;
    // populate mapping in the reverse direction, deliberate choice to avoid the cost of comparing addresses
    getPool[token1][token0][fee] = pool;
    emit PoolCreated(token0, token1, fee, tickSpacing, pool);
}

因为传入的tokenAtokenB是无序的,首先对tokenAtokenB排序,确保tokenA < tokenB

通过手续费等级获取对应的tickSpacing

int24 tickSpacing = feeAmountTickSpacing[fee];

我们在《深入理解Uniswap v3白皮书》中介绍过tickSpacing的作用,每个手续费等级对应一个tickSpacing,只有被tickSpacing整除的tick才允许被初始化,tickSpacing越大,每个tick流动性越多,tick之间滑点越大,但会节省跨tick操作的gas。这里作为Pool的参数保存起来。

确认该交易对对应的手续费等级没有创建过:

require(getPool[token0][token1][fee] == address(0));

创建(部署)交易对合约:

pool = deploy(address(this), token0, token1, fee, tickSpacing);

deploy代码如下:

/// @dev Deploys a pool with the given parameters by transiently setting the parameters storage slot and then
/// clearing it after deploying the pool.
/// @param factory The contract address of the Uniswap V3 factory
/// @param token0 The first token of the pool by address sort order
/// @param token1 The second token of the pool by address sort order
/// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
/// @param tickSpacing The spacing between usable ticks
function deploy(
    address factory,
    address token0,
    address token1,
    uint24 fee,
    int24 tickSpacing
) internal returns (address pool) {
    parameters = Parameters({factory: factory, token0: token0, token1: token1, fee: fee, tickSpacing: tickSpacing});
    pool = address(new UniswapV3Pool{salt: keccak256(abi.encode(token0, token1, fee))}());
    delete parameters;
}

我们在Uniswap v2中提到,为了确保交易对合约地址的可计算性和唯一性,Uniswap v2使用CREATE2操作码创建交易对合约;从Solidity 0.6.2版本开始(Github PR),支持在new方法中传递salt参数实现CREATE2功能;salt参数确保了合约地址的唯一性和可计算性。从代码可知,Uniswap v3交易对合约使用token0、token1、fee唯一确定一个交易对合约,比如,根据ETH-USDC 0.05%手续费(以及工厂合约地址、初始化代码hash)等信息,可计算交易对合约地址。

最后,保存交易对合约地址到getPool变量中:

getPool[token0][token1][fee] = pool;
// populate mapping in the reverse direction, deliberate choice to avoid the cost of comparing addresses
getPool[token1][token0][fee] = pool;
setOwner

设置工厂合约owner,owner具有以下权限:

首先判断请求由当前owner发起,确认后修改owner:

/// @inheritdoc IUniswapV3Factory
function setOwner(address _owner) external override {
    require(msg.sender == owner);
    emit OwnerChanged(owner, _owner);
    owner = _owner;
}
enableFeeAmount

Uniswap v3默认支持三种手续费等级:0.05%、0.30%和1.00%,对应的fee值分别为500、3000和10000;fee的基本单位是百分之一基点,即0.01 bp = $10^{-6}$。

手续费百分比计算公式为:

$$ f_{ratio} = \frac{fee}{1,000,000} $$

/// @inheritdoc IUniswapV3Factory
function enableFeeAmount(uint24 fee, int24 tickSpacing) public override {
    require(msg.sender == owner);
    require(fee < 1000000);
    // tick spacing is capped at 16384 to prevent the situation where tickSpacing is so large that
    // TickBitmap#nextInitializedTickWithinOneWord overflows int24 container from a valid tick
    // 16384 ticks represents a >5x price change with ticks of 1 bips
    require(tickSpacing > 0 && tickSpacing < 16384);
    require(feeAmountTickSpacing[fee] == 0);

    feeAmountTickSpacing[fee] = tickSpacing;
    emit FeeAmountEnabled(fee, tickSpacing);
}

UniswapV3Pool.sol

这是Uniswap v3的主要代码,定义了交易对池子的功能:

此外,factory(工厂合约)owner还可以调用以下两个方法:

initialize

创建完交易对后,需要调用initialize方法初始化合约,才能正常使用交易对功能。

该方法初始化slot0变量:

/// @inheritdoc IUniswapV3PoolActions
/// @dev not locked because it initializes unlocked
function initialize(uint160 sqrtPriceX96) external override {
    require(slot0.sqrtPriceX96 == 0, 'AI');

    int24 tick = TickMath.getTickAtSqrtRatio(sqrtPriceX96);

    (uint16 cardinality, uint16 cardinalityNext) = observations.initialize(_blockTimestamp());

    slot0 = Slot0({
        sqrtPriceX96: sqrtPriceX96,
        tick: tick,
        observationIndex: 0,
        observationCardinality: cardinality,
        observationCardinalityNext: cardinalityNext,
        feeProtocol: 0,
        unlocked: true
    });

    emit Initialize(sqrtPriceX96, tick);
}

slot0定义如下:

  • sqrtPriceX96:交易对当前的开根号价格 $\sqrt{P}$
  • tick:当前 $\sqrt{P}$ 对应的tick,使用getTickAtSqrtRatio计算得出
  • observationIndex:最近更新的(预言机)观测点数组序号
  • observationCardinality:(预言机)观测点数组容量,最大65536,初始时为1
  • observationCardinalityNext:下一个(预言机)观测点数组容量,如果手动扩容容量,会更新这个值,初始时为1
  • feeProtocol:协议手续费比例,可以分别为token0token1设置交易手续费中分给协议的比例
  • unlocked:当前交易对合约是否非锁定状态
mint

该方法实现添加流动性功能。实际上,首次添加流动性和后续增加流动性,都会使用该方法。

mint方法参数如下:

  • recipient:头寸接收者(owner)
  • tickLower:流动性区间低点
  • tickUpper:流动性区间高点
  • amount:流动性数量
  • data:回调参数
/// @inheritdoc IUniswapV3PoolActions
/// @dev noDelegateCall is applied indirectly via _modifyPosition
function mint(
    address recipient,
    int24 tickLower,
    int24 tickUpper,
    uint128 amount,
    bytes calldata data
) external override lock returns (uint256 amount0, uint256 amount1) {
    require(amount > 0);
    (, int256 amount0Int, int256 amount1Int) =
        _modifyPosition(
            ModifyPositionParams({
                owner: recipient,
                tickLower: tickLower,
                tickUpper: tickUpper,
                liquidityDelta: int256(amount).toInt128()
            })
        );

    amount0 = uint256(amount0Int);
    amount1 = uint256(amount1Int);

    uint256 balance0Before;
    uint256 balance1Before;
    if (amount0 > 0) balance0Before = balance0();
    if (amount1 > 0) balance1Before = balance1();
    IUniswapV3MintCallback(msg.sender).uniswapV3MintCallback(amount0, amount1, data);
    if (amount0 > 0) require(balance0Before.add(amount0) <= balance0(), 'M0');
    if (amount1 > 0) require(balance1Before.add(amount1) <= balance1(), 'M1');

    emit Mint(msg.sender, recipient, tickLower, tickUpper, amount, amount0, amount1);
}

mint方法主要的逻辑都在_modifyPosition中,其返回的amount0Intamount1Int表示:如果添加amount数量的流动性,则需要分别向交易对合约转入的token0token1的代币数量。

调用方需在uniswapV3MintCallback完成代币的转入操作;调用mint方法的合约需要实现IUniswapV3MintCallback接口,Uniswap v3在periphery合约的NonfungiblePositionManager.sol实现该接口。

因为mint调用方需要实现接口方法,因此个人ETH账户(EOA)无法调用该方法。

IUniswapV3MintCallback(msg.sender).uniswapV3MintCallback(amount0, amount1, data);
_modifyPosition

继续来看_modifyPosition

/// @dev Effect some changes to a position
/// @param params the position details and the change to the position's liquidity to effect
/// @return position a storage pointer referencing the position with the given owner and tick range
/// @return amount0 the amount of token0 owed to the pool, negative if the pool should pay the recipient
/// @return amount1 the amount of token1 owed to the pool, negative if the pool should pay the recipient
function _modifyPosition(ModifyPositionParams memory params)
    private
    noDelegateCall
    returns (
        Position.Info storage position,
        int256 amount0,
        int256 amount1
    )
{
    checkTicks(params.tickLower, params.tickUpper);

    Slot0 memory _slot0 = slot0; // SLOAD for gas optimization

    position = _updatePosition(
        params.owner,
        params.tickLower,
        params.tickUpper,
        params.liquidityDelta,
        _slot0.tick
    );

先通过_updatePosition更新头寸信息,我们在下一节会具体介绍。

    if (params.liquidityDelta != 0) {
        if (_slot0.tick < params.tickLower) {
            // current tick is below the passed range; liquidity can only become in range by crossing from left to
            // right, when we'll need _more_ token0 (it's becoming more valuable) so user must provide it
            amount0 = SqrtPriceMath.getAmount0Delta(
                TickMath.getSqrtRatioAtTick(params.tickLower),
                TickMath.getSqrtRatioAtTick(params.tickUpper),
                params.liquidityDelta
            );
        } else if (_slot0.tick < params.tickUpper) {
            // current tick is inside the passed range
            uint128 liquidityBefore = liquidity; // SLOAD for gas optimization

            // write an oracle entry
            (slot0.observationIndex, slot0.observationCardinality) = observations.write(
                _slot0.observationIndex,
                _blockTimestamp(),
                _slot0.tick,
                liquidityBefore,
                _slot0.observationCardinality,
                _slot0.observationCardinalityNext
            );

            amount0 = SqrtPriceMath.getAmount0Delta(
                _slot0.sqrtPriceX96,
                TickMath.getSqrtRatioAtTick(params.tickUpper),
                params.liquidityDelta
            );
            amount1 = SqrtPriceMath.getAmount1Delta(
                TickMath.getSqrtRatioAtTick(params.tickLower),
                _slot0.sqrtPriceX96,
                params.liquidityDelta
            );

            liquidity = LiquidityMath.addDelta(liquidityBefore, params.liquidityDelta);
        } else {
            // current tick is above the passed range; liquidity can only become in range by crossing from right to
            // left, when we'll need _more_ token1 (it's becoming more valuable) so user must provide it
            amount1 = SqrtPriceMath.getAmount1Delta(
                TickMath.getSqrtRatioAtTick(params.tickLower),
                TickMath.getSqrtRatioAtTick(params.tickUpper),
                params.liquidityDelta
            );
        }
    }
}

代码的下半部分则主要通过getAmount0DeltagetAmount1Delta计算该流动性需要分别提供的token0token1的数量,即amount0amount1

具体地,当你提供流动性的区间大于当前tick $i_c$ 时,因为tick大小与 $\sqrt{P}$(即 $\sqrt{\frac{y}{x}}$ )成正比,意味着在大于 $i_c$ 的区间, $x$ 的价值更高(需要更少的 $x$ ),因此添加流动性时需在该部分提供 $x$ 代币,即amount0数量的token0;反之,则提供 $y$ 代币,即amount1token1

如下所示:

$$ \begin{cases}i_c, ..., \overbrace{i_l, ..., i_u}^{amount0} & \text{$i_c < i_l$}\ \overbrace{i_l, ...}^{amount1}, i_c, \overbrace{..., i_u}^{amount0} & \text{$i_l \leq i_c < i_u$}\ \overbrace{i_l, ..., i_u}^{amount1}, ..., i_c & \text{$i_u \leq i_c$}\end{cases} $$

其中, $i_l$ , $i_u$ 为提供流动性价格区间的边界, $i_c$ 为当前价格对应的tick

如果当前价格在区间中,即 $i_l \leq i_c < i_u$ 时,_modifyPosition会记录一次(预言机)观测点数据,因为此时区间的流动性发生了变化,需要记录每流动性的持续时间secondsPerLiquidityCumulativeX128

// write an oracle entry
(slot0.observationIndex, slot0.observationCardinality) = observations.write(
    _slot0.observationIndex,
    _blockTimestamp(),
    _slot0.tick,
    liquidityBefore,
    _slot0.observationCardinality,
    _slot0.observationCardinalityNext
);

在计算amount0amount1后,更新当前交易对的全局活跃流动性liquidity

liquidity = LiquidityMath.addDelta(liquidityBefore, params.liquidityDelta);

这个全局流动性会在swap时用到。

_updatePosition

_modifyPosition中的_updatePosition代码如下:

/// @dev Gets and updates a position with the given liquidity delta
/// @param owner the owner of the position
/// @param tickLower the lower tick of the position's tick range
/// @param tickUpper the upper tick of the position's tick range
/// @param tick the current tick, passed to avoid sloads
function _updatePosition(
    address owner,
    int24 tickLower,
    int24 tickUpper,
    int128 liquidityDelta,
    int24 tick
) private returns (Position.Info storage position) {
    position = positions.get(owner, tickLower, tickUpper);

    uint256 _feeGrowthGlobal0X128 = feeGrowthGlobal0X128; // SLOAD for gas optimization
    uint256 _feeGrowthGlobal1X128 = feeGrowthGlobal1X128; // SLOAD for gas optimization

    // if we need to update the ticks, do it
    bool flippedLower;
    bool flippedUpper;
    if (liquidityDelta != 0) {
        uint32 time = _blockTimestamp();
        (int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) =
            observations.observeSingle(
                time,
                0,
                slot0.tick,
                slot0.observationIndex,
                liquidity,
                slot0.observationCardinality
            );

observations.observeSingle计算从最后一次观测点到现在的累积ticktickCumulative和累积每份流动性的持续时间secondsPerLiquidityCumulativeX128

        flippedLower = ticks.update(
            tickLower,
            tick,
            liquidityDelta,
            _feeGrowthGlobal0X128,
            _feeGrowthGlobal1X128,
            secondsPerLiquidityCumulativeX128,
            tickCumulative,
            time,
            false,
            maxLiquidityPerTick
        );
        flippedUpper = ticks.update(
            tickUpper,
            tick,
            liquidityDelta,
            _feeGrowthGlobal0X128,
            _feeGrowthGlobal1X128,
            secondsPerLiquidityCumulativeX128,
            tickCumulative,
            time,
            true,
            maxLiquidityPerTick
        );
        if (flippedLower) {
            tickBitmap.flipTick(tickLower, tickSpacing);
        }
        if (flippedUpper) {
            tickBitmap.flipTick(tickUpper, tickSpacing);
        }
    }

接着使用ticks.update分别更新tickLower(价格区间低点)和tickUpper(价格区间高点)的状态,具体请参考Tick.update

如果对应tick的流动性从从0到有,或从有到0,则表示该tick需要被翻转。如果该tick未被标记为初始化,则标记为初始化;否则,将其取消初始化;这里用到tickBitmap.flipTick方法,请参考TickBitmap.flipTick

    (uint256 feeGrowthInside0X128, uint256 feeGrowthInside1X128) =
        ticks.getFeeGrowthInside(tickLower, tickUpper, tick, _feeGrowthGlobal0X128, _feeGrowthGlobal1X128);

接着,计算该价格区间的累积每流动性手续费。

    position.update(liquidityDelta, feeGrowthInside0X128, feeGrowthInside1X128);

更新头寸(Position)信息,这里主要更新了头寸的应收手续费tokensOwed0tokensOwed1,以及头寸流动性liquidity,请参考Position.update

    // clear any tick data that is no longer needed
    if (liquidityDelta &lt; 0) {
        if (flippedLower) {
            ticks.clear(tickLower);
        }
        if (flippedUpper) {
            ticks.clear(tickUpper);
        }
    }
}

如果是移除流动性,并且tick被翻转,则调用clear清空tick状态。

最后,回到mint方法,调用者需要确保在uniswapV3MintCallback方法中,将这里计算出的amount0amount1数量的token0token1代币转入交易对合约。

总结mint方法的主要工作如下:

  1. 更新价格区间端点(lower, upper)的信息:ticks.update
  2. 如果Tick状态翻转,则更新位图的标识位,设置为“已初始化”或“未初始化”:tickBitmap.flipTick
  3. 更新头寸(Position)信息:positions.update
  4. 如果当前tick位于价格区间中,则:
    • 写入一次预言机观测点:observations.write
    • 更新全局活跃流动性:liquidity
  5. 调用方向交易对合约转账:uniswapV3MintCallback
burn

销毁流动性(burn)的逻辑与添加流动性(mint)几乎完全一样,唯一的区别是liquidityDelta是负的。

/// @inheritdoc IUniswapV3PoolActions
/// @dev noDelegateCall is applied indirectly via _modifyPosition
function burn(
    int24 tickLower,
    int24 tickUpper,
    uint128 amount
) external override lock returns (uint256 amount0, uint256 amount1) {
    (Position.Info storage position, int256 amount0Int, int256 amount1Int) =
        _modifyPosition(
            ModifyPositionParams({
                owner: msg.sender,
                tickLower: tickLower,
                tickUpper: tickUpper,
                liquidityDelta: -int256(amount).toInt128()
            })
        );

    amount0 = uint256(-amount0Int);
    amount1 = uint256(-amount1Int);

    if (amount0 > 0 || amount1 > 0) {
        (position.tokensOwed0, position.tokensOwed1) = (
            position.tokensOwed0 + uint128(amount0),
            position.tokensOwed1 + uint128(amount1)
        );
    }

    emit Burn(msg.sender, tickLower, tickUpper, amount, amount0, amount1);
}

这里与mint使用同一个_modifyPosition方法。

需注意,当销毁(部分)流动性后,代币并没有转回到调用方,而是以未领取代币的形式记在头寸(Position)上。

swap

swap方法是Uniswap v3代码的核心,该方法实现两个代币的交换,从token0交换到token1,或者相反。

相比Uniswap v2的同质化流动性,我们重点关注在swap过程中,价格如何变化,以及如何影响流动性的。

先来看swap方法的几个参数:

  • recipient:交易后的代币接收者
  • zeroForOne:如果从token0交换token1则为true,从token1交换token0则为false
  • amountSpecified: 指定的代币数量,如果为正,表示希望输入的代币数量;如果为负,则表示希望输出的代币数量
  • sqrtPriceLimitX96:能够承受的价格上限(或下限),格式为Q64.96;如果从token0token1,则表示swap过程中的价格下限;如果从token1token0,则表示价格上限;如果价格超过该值,则swap失败
  • data:回调参数
/// @inheritdoc IUniswapV3PoolActions
function swap(
    address recipient,
    bool zeroForOne,
    int256 amountSpecified,
    uint160 sqrtPriceLimitX96,
    bytes calldata data
) external override noDelegateCall returns (int256 amount0, int256 amount1) {
    require(amountSpecified != 0, 'AS');

    Slot0 memory slot0Start = slot0;

    require(slot0Start.unlocked, 'LOK');
    require(
        zeroForOne
            ? sqrtPriceLimitX96 &lt; slot0Start.sqrtPriceX96 && sqrtPriceLimitX96 > TickMath.MIN_SQRT_RATIO
            : sqrtPriceLimitX96 > slot0Start.sqrtPriceX96 && sqrtPriceLimitX96 &lt; TickMath.MAX_SQRT_RATIO,
        'SPL'
    );

    slot0.unlocked = false;

    SwapCache memory cache =
        SwapCache({
            liquidityStart: liquidity,
            blockTimestamp: _blockTimestamp(),
            feeProtocol: zeroForOne ? (slot0Start.feeProtocol % 16) : (slot0Start.feeProtocol >> 4),
            secondsPerLiquidityCumulativeX128: 0,
            tickCumulative: 0,
            computedLatestObservation: false
        });

    bool exactInput = amountSpecified > 0;

    SwapState memory state =
        SwapState({
            amountSpecifiedRemaining: amountSpecified,
            amountCalculated: 0,
            sqrtPriceX96: slot0Start.sqrtPriceX96,
            tick: slot0Start.tick,
            feeGrowthGlobalX128: zeroForOne ? feeGrowthGlobal0X128 : feeGrowthGlobal1X128,
            protocolFee: 0,
            liquidity: cache.liquidityStart
        });

上面代码主要是初始化状态相关的。

因为 $\sqrt{P} = \sqrt{\frac{y}{x}}$ ,当zeroForOne = true,即从token0token1时,swap过程中 Pool 的 $x$ 变多, $y$ 变少,因此 $\sqrt{P}$ 逐渐减小,所以指定的价格极限sqrtPriceLimitX96需要小于当前市场价格sqrtPriceX96

另外,需要注意几个关键数据:

  • 初始交易价格state.sqrtPriceX96为:slot0.sqrtPriceX96
    • 这里并没有使用slot0.tick计算初始价格,因为计算出来的值与slot0.sqrtPriceX96可能不一致,我们在后面代码会看到,slot0.tick不能作为当前价格
  • 初始可用流动性state.liquidity为:liquidity,也就是我们在mintburn时更新的全局可用流动性

根据zeroForOneexactInput,可以有四种swap组合:

zeroForOne exactInput swap
true true 输入固定数量token0,输出最大数量token1
true false 输入最小数量token0,输出固定数量token1
false true 输入固定数量token1,输出最大数量token0
false false 输入最小数量token1,输出固定数量token0

一个完整的swap可以由多个step组成,代码如下:

// continue swapping as long as we haven't used the entire input/output and haven't reached the price limit
while (state.amountSpecifiedRemaining != 0 && state.sqrtPriceX96 != sqrtPriceLimitX96) {
    StepComputations memory step;

    step.sqrtPriceStartX96 = state.sqrtPriceX96;

    (step.tickNext, step.initialized) = tickBitmap.nextInitializedTickWithinOneWord(
        state.tick,
        tickSpacing,
        zeroForOne
    );

    // ensure that we do not overshoot the min/max tick, as the tick bitmap is not aware of these bounds
    if (step.tickNext &lt; TickMath.MIN_TICK) {
        step.tickNext = TickMath.MIN_TICK;
    } else if (step.tickNext > TickMath.MAX_TICK) {
        step.tickNext = TickMath.MAX_TICK;
    }

    // get the price for the next tick
    step.sqrtPriceNextX96 = TickMath.getSqrtRatioAtTick(step.tickNext);

    // compute values to swap to the target tick, price limit, or point where input/output amount is exhausted
    (state.sqrtPriceX96, step.amountIn, step.amountOut, step.feeAmount) = SwapMath.computeSwapStep(
        state.sqrtPriceX96,
        (zeroForOne ? step.sqrtPriceNextX96 &lt; sqrtPriceLimitX96 : step.sqrtPriceNextX96 > sqrtPriceLimitX96)
            ? sqrtPriceLimitX96
            : step.sqrtPriceNextX96,
        state.liquidity,
        state.amountSpecifiedRemaining,
        fee
    );

    if (exactInput) {
        state.amountSpecifiedRemaining -= (step.amountIn + step.feeAmount).toInt256();
        state.amountCalculated = state.amountCalculated.sub(step.amountOut.toInt256());
    } else {
        state.amountSpecifiedRemaining += step.amountOut.toInt256();
        state.amountCalculated = state.amountCalculated.add((step.amountIn + step.feeAmount).toInt256());
    }

    // if the protocol fee is on, calculate how much is owed, decrement feeAmount, and increment protocolFee
    if (cache.feeProtocol > 0) {
        uint256 delta = step.feeAmount / cache.feeProtocol;
        step.feeAmount -= delta;
        state.protocolFee += uint128(delta);
    }

    // update global fee tracker
    if (state.liquidity > 0)
        state.feeGrowthGlobalX128 += FullMath.mulDiv(step.feeAmount, FixedPoint128.Q128, state.liquidity);

    // shift tick if we reached the next price
    if (state.sqrtPriceX96 == step.sqrtPriceNextX96) {
        // if the tick is initialized, run the tick transition
        if (step.initialized) {
            // check for the placeholder value, which we replace with the actual value the first time the swap
            // crosses an initialized tick
            if (!cache.computedLatestObservation) {
                (cache.tickCumulative, cache.secondsPerLiquidityCumulativeX128) = observations.observeSingle(
                    cache.blockTimestamp,
                    0,
                    slot0Start.tick,
                    slot0Start.observationIndex,
                    cache.liquidityStart,
                    slot0Start.observationCardinality
                );
                cache.computedLatestObservation = true;
            }
            int128 liquidityNet =
                ticks.cross(
                    step.tickNext,
                    (zeroForOne ? state.feeGrowthGlobalX128 : feeGrowthGlobal0X128),
                    (zeroForOne ? feeGrowthGlobal1X128 : state.feeGrowthGlobalX128),
                    cache.secondsPerLiquidityCumulativeX128,
                    cache.tickCumulative,
                    cache.blockTimestamp
                );
            // if we're moving leftward, we interpret liquidityNet as the opposite sign
            // safe because liquidityNet cannot be type(int128).min
            if (zeroForOne) liquidityNet = -liquidityNet;

            state.liquidity = LiquidityMath.addDelta(state.liquidity, liquidityNet);
        }

        state.tick = zeroForOne ? step.tickNext - 1 : step.tickNext;
    } else if (state.sqrtPriceX96 != step.sqrtPriceStartX96) {
        // recompute unless we're on a lower tick boundary (i.e. already transitioned ticks), and haven't moved
        state.tick = TickMath.getTickAtSqrtRatio(state.sqrtPriceX96);
    }
}

整理成伪代码(pseudo code)如下:

loop if 剩余代币 != 0 and 当前价格 != 最小(或最大)价格:
    // step
    初始价格 := 上一个step的价格
    下一个tick := 根据当前tick,寻找最近的已初始化的tick,或者本组最后一个未初始化的tick
    目标价格 := 根据下一个tick计算的价格
    交换后的价格, 消耗的输入代币数量, 得到的输出代币数量, 交易手续费 := 完成一步交换(初始价格, 目标价格, 可用流动性, 剩余代币)

    更新 剩余代币
    更新 协议手续费

    if 交换后价格 == 目标价格:
        if tick已初始化:
            价格穿越该tick,更新tick相关字段
            更新 可用流动性

        当前tick := 下一个tick - 1
    else if 交换后价格 != 初始价格:
        当前tick := 根据交换后价格计算tick

首先需要根据当前tick寻找下一个tick,即tickNext,具体逻辑可参考:tickBitmap.nextInitializedTickWithinOneWord

计算当前step的目标价格:

// get the price for the next tick
step.sqrtPriceNextX96 = TickMath.getSqrtRatioAtTick(step.tickNext);

计算本次(step)交换的输入输出(即执行一次交换):

// compute values to swap to the target tick, price limit, or point where input/output amount is exhausted
(state.sqrtPriceX96, step.amountIn, step.amountOut, step.feeAmount) = SwapMath.computeSwapStep(
    state.sqrtPriceX96,
    (zeroForOne ? step.sqrtPriceNextX96 &lt; sqrtPriceLimitX96 : step.sqrtPriceNextX96 > sqrtPriceLimitX96)
        ? sqrtPriceLimitX96
        : step.sqrtPriceNextX96,
    state.liquidity,
    state.amountSpecifiedRemaining,
    fee
);

SwapMath.computeSwapStep将根据当前价格、目标价格、可用流动性、可用输入代币等数据,计算本次交换能最多成交的输入代币数量(amountIn),输出代币数量(amountOut),手续费(feeAmount)和成交后价格(sqrtRatioNextX96)。请参考computeSwapStep

保存本次交易的amountInamountOut

if (exactInput) {
    state.amountSpecifiedRemaining -= (step.amountIn + step.feeAmount).toInt256();
    state.amountCalculated = state.amountCalculated.sub(step.amountOut.toInt256());
} else {
    state.amountSpecifiedRemaining += step.amountOut.toInt256();
    state.amountCalculated = state.amountCalculated.add((step.amountIn + step.feeAmount).toInt256());
}
  • 如果是指定输入代币数量(token0token1
    • amountSpecifiedRemaining表示(扣除手续费后)剩余可用输入代币数量
    • amountCalculated表示已输出代币数量(注意,这里是负值)
  • 如果是指定输出代币数量(token0token1
    • amountSpecifiedRemaining表示剩余需要输出的代币数量(初始为负值,因此每次交换后需要+= step.amountOut),直到为0
    • amountCalculated表示(加入手续费后)已使用的输入代币数量

计算协议手续费:

// if the protocol fee is on, calculate how much is owed, decrement feeAmount, and increment protocolFee
if (cache.feeProtocol > 0) {
    uint256 delta = step.feeAmount / cache.feeProtocol;
    step.feeAmount -= delta;
    state.protocolFee += uint128(delta);
}

如果开启了协议手续费,则从交易手续费中拆出协议手续费。注意,协议手续费的值feeProtocol表示交易手续费的 $\frac{1}{n}$。

// update global fee tracker
if (state.liquidity > 0)
    state.feeGrowthGlobalX128 += FullMath.mulDiv(step.feeAmount, FixedPoint128.Q128, state.liquidity);

计算(每流动性)全局累积手续费。

// shift tick if we reached the next price
if (state.sqrtPriceX96 == step.sqrtPriceNextX96) {
    // if the tick is initialized, run the tick transition
    if (step.initialized) {
        // check for the placeholder value, which we replace with the actual value the first time the swap
        // crosses an initialized tick
        if (!cache.computedLatestObservation) {
            (cache.tickCumulative, cache.secondsPerLiquidityCumulativeX128) = observations.observeSingle(
                cache.blockTimestamp,
                0,
                slot0Start.tick,
                slot0Start.observationIndex,
                cache.liquidityStart,
                slot0Start.observationCardinality
            );
            cache.computedLatestObservation = true;
        }
        int128 liquidityNet =
            ticks.cross(
                step.tickNext,
                (zeroForOne ? state.feeGrowthGlobalX128 : feeGrowthGlobal0X128),
                (zeroForOne ? feeGrowthGlobal1X128 : state.feeGrowthGlobalX128),
                cache.secondsPerLiquidityCumulativeX128,
                cache.tickCumulative,
                cache.blockTimestamp
            );
        // if we're moving leftward, we interpret liquidityNet as the opposite sign
        // safe because liquidityNet cannot be type(int128).min
        if (zeroForOne) liquidityNet = -liquidityNet;

        state.liquidity = LiquidityMath.addDelta(state.liquidity, liquidityNet);
    }

    state.tick = zeroForOne ? step.tickNext - 1 : step.tickNext;
} else if (state.sqrtPriceX96 != step.sqrtPriceStartX96) {
    // recompute unless we're on a lower tick boundary (i.e. already transitioned ticks), and haven't moved
    state.tick = TickMath.getTickAtSqrtRatio(state.sqrtPriceX96);
}
  • 如果本次交换后的价格达到目标价格(即根据寻找的下一个tick计算的价格):
    • 如果该tick已经初始化,则:
      • 通过ticks.cross方法穿越该tick,反向设置相关Outside变量的数据
      • 使用tick净流动性liquidityNet更新可用流动性state.liquidity
        • 由于在mint初始化tick时,tickLowerliquidityNet是正的,即liquidityDeltatickUpperliquidityNet是负的,即-liquidityDelta;因此这里需要根据zeroForOne的值来调整liquidityNet的正负
        • zeroForOne = true时,随着交易的进行, Pool 中 $x$ 变多, $y$ 变少,价格 $\sqrt{P}$ 逐渐变小,tick朝 lower 方向移动,如果穿越了tickLower,意味着离开区间,因此需要减少流动性;反之,如果穿越了tickUpper,意味着进入区间,因此需要增加流动性;即都使用 -liquidityNet
        • zeroForOne = false时,随着交易的进行, Pool 中 $y$ 变多, $x$ 变少,价格 $\sqrt{P}$ 逐渐变大,tick朝 upper 方向移动,如果穿越了tickUpper,意味着离开区间,因此需要减少流动性;反之,如果穿越了tickLower,意味着进入区间,因此需要增加流动性;即都使用 liquidityNet
    • 移动当前tick到下一个tick
  • 如果交换后的价格没有达到本次目标价格,但是又不等于初始价格,即表示此时交易结束:
    • 使用交换后的价格计算最新的tick

重复上述step,直到交换完全结束。

完成交换后,更新全局状态:

// update tick and write an oracle entry if the tick change
if (state.tick != slot0Start.tick) {
    (uint16 observationIndex, uint16 observationCardinality) =
        observations.write(
            slot0Start.observationIndex,
            cache.blockTimestamp,
            slot0Start.tick,
            cache.liquidityStart,
            slot0Start.observationCardinality,
            slot0Start.observationCardinalityNext
        );
    (slot0.sqrtPriceX96, slot0.tick, slot0.observationIndex, slot0.observationCardinality) = (
        state.sqrtPriceX96,
        state.tick,
        observationIndex,
        observationCardinality
    );
} else {
    // otherwise just update the price
    slot0.sqrtPriceX96 = state.sqrtPriceX96;
}
  • 如果交换后的tick与交换前的tick不同:
    • 记录一次(预言机)观测点数据,因为tickCumulative发生了改变
    • 更新slot0.sqrtPriceX96, slot0.tick等值,注意此时sqrtPriceX96tick并不一定对应,sqrtPriceX96才能准确反映当前价格
  • 如果交换前后tick值相同,则只需要修改价格:
    • 更新slot0.sqrtPriceX96

同样,如果全局流动性发生改变,则更新liquidity

// update liquidity if it changed
if (cache.liquidityStart != state.liquidity) liquidity = state.liquidity;

更新累积手续费和协议手续费:

// update fee growth global and, if necessary, protocol fees
// overflow is acceptable, protocol has to withdraw before it hits type(uint128).max fees
if (zeroForOne) {
    feeGrowthGlobal0X128 = state.feeGrowthGlobalX128;
    if (state.protocolFee > 0) protocolFees.token0 += state.protocolFee;
} else {
    feeGrowthGlobal1X128 = state.feeGrowthGlobalX128;
    if (state.protocolFee > 0) protocolFees.token1 += state.protocolFee;
}

注意,如果是从token0交换token1,则只能收取token0作为手续费;反之,只能收取token1作为手续费。

(amount0, amount1) = zeroForOne == exactInput
    ? (amountSpecified - state.amountSpecifiedRemaining, state.amountCalculated)
    : (state.amountCalculated, amountSpecified - state.amountSpecifiedRemaining);

计算本次交换需要的具体amount0amount1

// do the transfers and collect payment
if (zeroForOne) {
    if (amount1 &lt; 0) TransferHelper.safeTransfer(token1, recipient, uint256(-amount1));

    uint256 balance0Before = balance0();
    IUniswapV3SwapCallback(msg.sender).uniswapV3SwapCallback(amount0, amount1, data);
    require(balance0Before.add(uint256(amount0)) &lt;= balance0(), 'IIA');
} else {
    if (amount0 &lt; 0) TransferHelper.safeTransfer(token0, recipient, uint256(-amount0));

    uint256 balance1Before = balance1();
    IUniswapV3SwapCallback(msg.sender).uniswapV3SwapCallback(amount0, amount1, data);
    require(balance1Before.add(uint256(amount1)) &lt;= balance1(), 'IIA');
}

emit Swap(msg.sender, recipient, amount0, amount1, state.sqrtPriceX96, state.liquidity, state.tick);
slot0.unlocked = true;

合约将输出代币转账给recipient,同时,调用方需要在uniswapV3SwapCallback方法将输入代币转给交易对合约:

至此,整个swap流程就结束了。

flash

本方法实现Uniswap v3闪电贷功能。

方法参数:

  • recipient:闪电贷接收者
  • amount0:借出token0的数量
  • amount1:借出token1的数量
  • data:回调方法参数
/// @inheritdoc IUniswapV3PoolActions
function flash(
    address recipient,
    uint256 amount0,
    uint256 amount1,
    bytes calldata data
) external override lock noDelegateCall {
    uint128 _liquidity = liquidity;
    require(_liquidity > 0, 'L');

    uint256 fee0 = FullMath.mulDivRoundingUp(amount0, fee, 1e6);
    uint256 fee1 = FullMath.mulDivRoundingUp(amount1, fee, 1e6);

闪电贷手续费与swap手续费相同,都是 $\frac{fee}{10^6}$。

    uint256 balance0Before = balance0();
    uint256 balance1Before = balance1();

    if (amount0 > 0) TransferHelper.safeTransfer(token0, recipient, amount0);
    if (amount1 > 0) TransferHelper.safeTransfer(token1, recipient, amount1);

    IUniswapV3FlashCallback(msg.sender).uniswapV3FlashCallback(fee0, fee1, data);

    uint256 balance0After = balance0();
    uint256 balance1After = balance1();

    require(balance0Before.add(fee0) &lt;= balance0After, 'F0');
    require(balance1Before.add(fee1) &lt;= balance1After, 'F1');

向收款人转入贷出的代币数量,flash方法的调用方需实现IUniswapV3FlashCallback.uniswapV3FlashCallback接口方法,并在该方法中归还代币,包含手续费。

    // sub is safe because we know balanceAfter is gt balanceBefore by at least fee
    uint256 paid0 = balance0After - balance0Before;
    uint256 paid1 = balance1After - balance1Before;

    if (paid0 > 0) {
        uint8 feeProtocol0 = slot0.feeProtocol % 16;
        uint256 fees0 = feeProtocol0 == 0 ? 0 : paid0 / feeProtocol0;
        if (uint128(fees0) > 0) protocolFees.token0 += uint128(fees0);
        feeGrowthGlobal0X128 += FullMath.mulDiv(paid0 - fees0, FixedPoint128.Q128, _liquidity);
    }
    if (paid1 > 0) {
        uint8 feeProtocol1 = slot0.feeProtocol >> 4;
        uint256 fees1 = feeProtocol1 == 0 ? 0 : paid1 / feeProtocol1;
        if (uint128(fees1) > 0) protocolFees.token1 += uint128(fees1);
        feeGrowthGlobal1X128 += FullMath.mulDiv(paid1 - fees1, FixedPoint128.Q128, _liquidity);
    }

    emit Flash(msg.sender, recipient, amount0, amount1, paid0, paid1);
}

根据收取的手续费,计算协议手续费(注意,token0token1的协议手续费是单独设置的,参考:setFeeProtocol),最后更新protocolFeesfeeGrowthGlobal1X128

collect

该方法实现取回代币功能,包括销毁流动性记录的代币和手续费代币。

参数如下:

  • recipient:代币接收者
  • tickLower:头寸低点
  • tickUpper:头寸高点
  • amount0Requested:请求取回的token0数量
  • amount1Requested:请求取回的token1数量
/// @inheritdoc IUniswapV3PoolActions
function collect(
    address recipient,
    int24 tickLower,
    int24 tickUpper,
    uint128 amount0Requested,
    uint128 amount1Requested
) external override lock returns (uint128 amount0, uint128 amount1) {
    // we don't need to checkTicks here, because invalid positions will never have non-zero tokensOwed{0,1}
    Position.Info storage position = positions.get(msg.sender, tickLower, tickUpper);

    amount0 = amount0Requested > position.tokensOwed0 ? position.tokensOwed0 : amount0Requested;
    amount1 = amount1Requested > position.tokensOwed1 ? position.tokensOwed1 : amount1Requested;

    if (amount0 > 0) {
        position.tokensOwed0 -= amount0;
        TransferHelper.safeTransfer(token0, recipient, amount0);
    }
    if (amount1 > 0) {
        position.tokensOwed1 -= amount1;
        TransferHelper.safeTransfer(token1, recipient, amount1);
    }

    emit Collect(msg.sender, recipient, tickLower, tickUpper, amount0, amount1);
}

上述代码比较简单,这里不再展开。需要注意,如果希望取回所有代币,则需要指定比tokensOwned更大的数,比如可以使用type(uint128).max

increaseObservationCardinalityNext

扩容预言机观测点的可写入空间,该方法调用Oracle.solgrow方法实现扩容。

/// @inheritdoc IUniswapV3PoolActions
function increaseObservationCardinalityNext(uint16 observationCardinalityNext)
    external
    override
    lock
    noDelegateCall
{
    uint16 observationCardinalityNextOld = slot0.observationCardinalityNext; // for the event
    uint16 observationCardinalityNextNew =
        observations.grow(observationCardinalityNextOld, observationCardinalityNext);
    slot0.observationCardinalityNext = observationCardinalityNextNew;
    if (observationCardinalityNextOld != observationCardinalityNextNew)
        emit IncreaseObservationCardinalityNext(observationCardinalityNextOld, observationCardinalityNextNew);
}
observe

批量获取指定时间的观测点数据,该方法调用Oracle.solobserve实现。

/// @inheritdoc IUniswapV3PoolDerivedState
function observe(uint32[] calldata secondsAgos)
    external
    view
    override
    noDelegateCall
    returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s)
{
    return
        observations.observe(
            _blockTimestamp(),
            secondsAgos,
            slot0.tick,
            slot0.observationIndex,
            liquidity,
            slot0.observationCardinality
        );
}
setFeeProtocol

设置协议手续费的比例,该方法仅允许工厂合约的owner执行。

注意,需要分别设置token0token1的协议手续费比例,该比例是交易手续费的占比,合法值为0(不开启协议手续费)或者 $4 \leq n \leq 10$,也就是可以设置协议手续费为交易手续费的 $\frac{1}{n}$。

/// @inheritdoc IUniswapV3PoolOwnerActions
function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external override lock onlyFactoryOwner {
    require(
        (feeProtocol0 == 0 || (feeProtocol0 >= 4 && feeProtocol0 &lt;= 10)) &&
            (feeProtocol1 == 0 || (feeProtocol1 >= 4 && feeProtocol1 &lt;= 10))
    );
    uint8 feeProtocolOld = slot0.feeProtocol;
    slot0.feeProtocol = feeProtocol0 + (feeProtocol1 &lt;&lt; 4);
    emit SetFeeProtocol(feeProtocolOld % 16, feeProtocolOld >> 4, feeProtocol0, feeProtocol1);
}

slot0.feeProtocol类型为uint8,保存两种代币的协议手续费比例,高4位为token1,低4位为token0

$$ slot0.feeProtocol = \overbrace{0000}^{fee1}\overbrace{0000}^{fee0} $$

因此,feeProtocolOld % 16表示token0的协议手续费比例fee0feeProtocolOld >> 4表示token1的协议手续费比例fee1

collectProtocol

取回协议手续费,该方法仅允许工厂合约的owner执行。

协议手续费有两个来源:

  • swap产生的交易手续费
  • flash产生的闪电贷手续费
/// @inheritdoc IUniswapV3PoolOwnerActions
function collectProtocol(
    address recipient,
    uint128 amount0Requested,
    uint128 amount1Requested
) external override lock onlyFactoryOwner returns (uint128 amount0, uint128 amount1) {
    amount0 = amount0Requested > protocolFees.token0 ? protocolFees.token0 : amount0Requested;
    amount1 = amount1Requested > protocolFees.token1 ? protocolFees.token1 : amount1Requested;

    if (amount0 > 0) {
        if (amount0 == protocolFees.token0) amount0--; // ensure that the slot is not cleared, for gas savings
        protocolFees.token0 -= amount0;
        TransferHelper.safeTransfer(token0, recipient, amount0);
    }
    if (amount1 > 0) {
        if (amount1 == protocolFees.token1) amount1--; // ensure that the slot is not cleared, for gas savings
        protocolFees.token1 -= amount1;
        TransferHelper.safeTransfer(token1, recipient, amount1);
    }

    emit CollectProtocol(msg.sender, recipient, amount0, amount1);
}

上述代码比较简单,此处不再展开。

Tick.sol

Tick.sol管理Tick内部状态。

tickSpacingToMaxLiquidityPerTick

根据tickSpacing计算每个tick最大流动性,只有能够被tickSpacing整除的tick才能够存放流动性:

/// @notice Derives max liquidity per tick from given tick spacing
/// @dev Executed within the pool constructor
/// @param tickSpacing The amount of required tick separation, realized in multiples of `tickSpacing`
///     e.g., a tickSpacing of 3 requires ticks to be initialized every 3rd tick i.e., ..., -6, -3, 0, 3, 6, ...
/// @return The max liquidity per tick
function tickSpacingToMaxLiquidityPerTick(int24 tickSpacing) internal pure returns (uint128) {
    int24 minTick = (TickMath.MIN_TICK / tickSpacing) * tickSpacing;
    int24 maxTick = (TickMath.MAX_TICK / tickSpacing) * tickSpacing;
    uint24 numTicks = uint24((maxTick - minTick) / tickSpacing) + 1;
    return type(uint128).max / numTicks;
}
getFeeGrowthInside

计算两个tick区间内部的每流动性累积手续费,该方法实现白皮书公式6.17-6.19:

$$ f_a(i) = \begin{cases} f_g - f_o(i) & \text{$i_c \geq i$}\ f_o(i) & \text{$i_c < i$} \end{cases} \quad \text{(6.17)} $$

$$ f_b(i) = \begin{cases} f_o(i) & \text{$i_c \geq i$}\ f_g - f_o(i) & \text{$i_c < i$}\end{cases} \quad \text{(6.18)} $$

$$ f_r = f_g - f_b(i_l) - f_a(i_u) \quad \text{(6.19)} $$

代码如下:

/// @notice Retrieves fee growth data
/// @param self The mapping containing all tick information for initialized ticks
/// @param tickLower The lower tick boundary of the position
/// @param tickUpper The upper tick boundary of the position
/// @param tickCurrent The current tick
/// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0
/// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1
/// @return feeGrowthInside0X128 The all-time fee growth in token0, per unit of liquidity, inside the position's tick boundaries
/// @return feeGrowthInside1X128 The all-time fee growth in token1, per unit of liquidity, inside the position's tick boundaries
function getFeeGrowthInside(
    mapping(int24 => Tick.Info) storage self,
    int24 tickLower,
    int24 tickUpper,
    int24 tickCurrent,
    uint256 feeGrowthGlobal0X128,
    uint256 feeGrowthGlobal1X128
) internal view returns (uint256 feeGrowthInside0X128, uint256 feeGrowthInside1X128) {
    Info storage lower = self[tickLower];
    Info storage upper = self[tickUpper];

    // calculate fee growth below
    uint256 feeGrowthBelow0X128;
    uint256 feeGrowthBelow1X128;
    if (tickCurrent >= tickLower) {
        feeGrowthBelow0X128 = lower.feeGrowthOutside0X128;
        feeGrowthBelow1X128 = lower.feeGrowthOutside1X128;
    } else {
        feeGrowthBelow0X128 = feeGrowthGlobal0X128 - lower.feeGrowthOutside0X128;
        feeGrowthBelow1X128 = feeGrowthGlobal1X128 - lower.feeGrowthOutside1X128;
    }

    // calculate fee growth above
    uint256 feeGrowthAbove0X128;
    uint256 feeGrowthAbove1X128;
    if (tickCurrent &lt; tickUpper) {
        feeGrowthAbove0X128 = upper.feeGrowthOutside0X128;
        feeGrowthAbove1X128 = upper.feeGrowthOutside1X128;
    } else {
        feeGrowthAbove0X128 = feeGrowthGlobal0X128 - upper.feeGrowthOutside0X128;
        feeGrowthAbove1X128 = feeGrowthGlobal1X128 - upper.feeGrowthOutside1X128;
    }

    feeGrowthInside0X128 = feeGrowthGlobal0X128 - feeGrowthBelow0X128 - feeGrowthAbove0X128;
    feeGrowthInside1X128 = feeGrowthGlobal1X128 - feeGrowthBelow1X128 - feeGrowthAbove1X128;
}

首先根据当前tickCurrent,分别计算tickLowertickUpper的 $f_a$ , $f_b$ ,最后计算出区间内手续费 $f_r$:

$$ \underbrace{\overbrace{..., i_l - 1}^{f_b(i_l)}, \overbrace{i_l, i_l + 1, ..., i_u - 1, i_u}^{f_r}, \overbrace{i_u + 1, ...}^{f_a(iu)}}{f_g} $$

为什么需要计算区间内每流动性累计手续费呢?因为每个头寸(Position)会在mint/burn时根据该值计算自己的应收手续费:

$$ liquidityDelta \cdot (feeGrowthInside - feeGrowthInsideLast) $$

update

更新tick状态,并返回该tick是否翻转flipped

/// @notice Updates a tick and returns true if the tick was flipped from initialized to uninitialized, or vice versa
/// @param self The mapping containing all tick information for initialized ticks
/// @param tick The tick that will be updated
/// @param tickCurrent The current tick
/// @param liquidityDelta A new amount of liquidity to be added (subtracted) when tick is crossed from left to right (right to left)
/// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0
/// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1
/// @param secondsPerLiquidityCumulativeX128 The all-time seconds per max(1, liquidity) of the pool
/// @param tickCumulative The tick * time elapsed since the pool was first initialized
/// @param time The current block timestamp cast to a uint32
/// @param upper true for updating a position's upper tick, or false for updating a position's lower tick
/// @param maxLiquidity The maximum liquidity allocation for a single tick
/// @return flipped Whether the tick was flipped from initialized to uninitialized, or vice versa
function update(
    mapping(int24 => Tick.Info) storage self,
    int24 tick,
    int24 tickCurrent,
    int128 liquidityDelta,
    uint256 feeGrowthGlobal0X128,
    uint256 feeGrowthGlobal1X128,
    uint160 secondsPerLiquidityCumulativeX128,
    int56 tickCumulative,
    uint32 time,
    bool upper,
    uint128 maxLiquidity
) internal returns (bool flipped) {
    Tick.Info storage info = self[tick];

    uint128 liquidityGrossBefore = info.liquidityGross;
    uint128 liquidityGrossAfter = LiquidityMath.addDelta(liquidityGrossBefore, liquidityDelta);

    require(liquidityGrossAfter &lt;= maxLiquidity, 'LO');

    flipped = (liquidityGrossAfter == 0) != (liquidityGrossBefore == 0);

如果tick从无流动性到有流动性,或者从有流动性变成无流动性,则表示tick需要翻转flipped

    if (liquidityGrossBefore == 0) {
        // by convention, we assume that all growth before a tick was initialized happened _below_ the tick
        if (tick &lt;= tickCurrent) {
            info.feeGrowthOutside0X128 = feeGrowthGlobal0X128;
            info.feeGrowthOutside1X128 = feeGrowthGlobal1X128;
            info.secondsPerLiquidityOutsideX128 = secondsPerLiquidityCumulativeX128;
            info.tickCumulativeOutside = tickCumulative;
            info.secondsOutside = time;
        }
        info.initialized = true;
    }

如果tick之前没有流动性,则进行初始化;对于小于当前tickCurrenttick,设置Outside等变量。

    info.liquidityGross = liquidityGrossAfter;

liquidityGross表示总流动性,用于判断tick是否需要初始化:

  • 如果mint,则增加流动性;如果burn,则减少流动性
  • 该变量与tick在不同头寸中是否作为边界低点或高点无关,只与mintburn操作有关
  • 如果一个tick同时被用作tickLowertickUpper,则其liquidityNet可能是0,但liquidityGross仍然会大于0,因此不需要再次初始化
    // when the lower (upper) tick is crossed left to right (right to left), liquidity must be added (removed)
    info.liquidityNet = upper
        ? int256(info.liquidityNet).sub(liquidityDelta).toInt128()
        : int256(info.liquidityNet).add(liquidityDelta).toInt128();
}

liquidityNet表示净流动性,当swap穿越tick时,用于更新全局可用流动性liquidity

  • 如果作为tickLower,即边界低点(左边界点),则增加liquidityDeltamint时为正,burn时为负)
  • 如果作为tickUpper,即边界高点(右边界点),则减少liquidityDeltamint时为正,burn时为负)
clear

tick翻转后,如果没有流动性关联该tick,即liquidityGross = 0,则清空tick状态:

/// @notice Clears tick data
/// @param self The mapping containing all initialized tick information for initialized ticks
/// @param tick The tick that will be cleared
function clear(mapping(int24 => Tick.Info) storage self, int24 tick) internal {
    delete self[tick];
}
cross

tick被穿越时,需要翻转Outside等变量的方向,如白皮书公式6.20:

$$ f_o(i) := f_g - f_o(i) \quad \text{(6.20)} $$

这些变量在getFeeGrowthInside等方法被用到。

/// @notice Transitions to next tick as needed by price movement
/// @param self The mapping containing all tick information for initialized ticks
/// @param tick The destination tick of the transition
/// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0
/// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1
/// @param secondsPerLiquidityCumulativeX128 The current seconds per liquidity
/// @param tickCumulative The tick * time elapsed since the pool was first initialized
/// @param time The current block.timestamp
/// @return liquidityNet The amount of liquidity added (subtracted) when tick is crossed from left to right (right to left)
function cross(
    mapping(int24 => Tick.Info) storage self,
    int24 tick,
    uint256 feeGrowthGlobal0X128,
    uint256 feeGrowthGlobal1X128,
    uint160 secondsPerLiquidityCumulativeX128,
    int56 tickCumulative,
    uint32 time
) internal returns (int128 liquidityNet) {
    Tick.Info storage info = self[tick];
    info.feeGrowthOutside0X128 = feeGrowthGlobal0X128 - info.feeGrowthOutside0X128;
    info.feeGrowthOutside1X128 = feeGrowthGlobal1X128 - info.feeGrowthOutside1X128;
    info.secondsPerLiquidityOutsideX128 = secondsPerLiquidityCumulativeX128 - info.secondsPerLiquidityOutsideX128;
    info.tickCumulativeOutside = tickCumulative - info.tickCumulativeOutside;
    info.secondsOutside = time - info.secondsOutside;
    liquidityNet = info.liquidityNet;
}

TickMath.sol

TickMath主要包含两个方法:

getSqrtRatioAtTick

该方法对应白皮书公式6.2:

$$ \sqrt{p}(i) = \sqrt{1.0001}^i = 1.0001^{\frac{i}{2}} $$

其中, $i$ 即为tick

因为Uniswap v3支持的价格( $\frac{token1}{token0}$ )区间为 $[2^{-128}, 2^{128}]$ ,根据白皮书公式6.1:

$$ p(i) = 1.0001^i $$

因此,对应的最大tick(MAX_TICK)为:

$$ i = \lfloor log{1.0001}{p(i)} \rfloor = \lfloor log{1.0001}{2^{128}} \rfloor = \lfloor 887272.7517970635 \rfloor = 887272 $$

最小tick(MIN_TICK)为:

$$ i = \lceil log_{1.0001}{2^{-128}} \rceil = \lceil -887272.7517970635 \rceil = -887272 $$

假设 $i$ $\geq 0$,对于一个给定的tick $i$,它总可以表示为二进制,因此以下式子总是成立:

$$ \begin{cases} i = \sum_{n=0}^{19}{(x_n \cdot 2^n)} = x_0 \cdot 1 + x_1 \cdot 2 + x2 \cdot 4 + ... + x{19}\cdot 524288 \ \forall x_n \in {0, 1} \end{cases} \quad \text{(1.1)} $$

其中, $x_n$ 为 $i$ 的二进制位。如 $i=6$ ,其对应的二进制为:000000000000000000000110,则 $x_1 = 1, x_2 = 1$ ,其余 $x_n$ 均为0。

同样可以推出 $i < 0$ 也可以用类似的公式表示。

我们先看 $i < 0$ 的情况:

如果 $i < 0$,则:

$$ \sqrt{p}(i) = 1.0001^{\frac{i}{2}} = 1.0001^{-\frac{|i|}{2}} = \frac{1}{1.0001^{\frac{|i|}{2}}} = \frac{1}{1.0001^{\frac{1}{2}(\sum_{n=0}^{19}{(x_n \cdot 2^n)})}} \ = \frac{1}{1.0001^{\frac{1}{2} \cdot x_0}} \cdot \frac{1}{1.0001^{\frac{2}{2} \cdot x_1}} \cdot \frac{1}{1.0001^{\frac{4}{2} \cdot x2}} \cdot ... \cdot \frac{1}{1.0001^{\frac{524288}{2} \cdot x{19}}} $$

根据二进制位 $x_n$ 的值,可以总结如下:

$$ \frac{1}{1.0001^{\frac{x_n \cdot 2^n}{2}}} \begin{cases} = 1 & \text{$x_n = 0, n \geq 0, i < 0$}\ < 1 & \text{$x_n = 1, n \geq 0, i < 0$} \end{cases} $$

为了最小化精度误差,在计算过程中,使用Q128.128(128位定点数)表示中间价格,对于每一个价格 $p$ ,均需要左移128位。由于 $i < 0, x_n = 1$ 时, $\frac{1}{1.0001^{\frac{x_n \cdot 2^n}{2}}} < 1$ ,因此在连续乘积过程中不会有溢出问题。

可以总结计算 $\sqrt{p}(i)$ 的方法:

  • 初始值为1,从第0位开始,从低位到高位(从右往左)循环遍历 $i$ 的二进制比特位
  • 如果该位不为0,则乘以对应的 $\frac{2^{128}}{1.0001^{\frac{2^n}{2}}}$ ,其中 $2^{128}$ 表示左移128位
  • 如果该位为0,则乘以1,可以省略
/// @notice Calculates sqrt(1.0001^tick) * 2^96
/// @dev Throws if |tick| > max tick
/// @param tick The input tick for the above formula
/// @return sqrtPriceX96 A Fixed point Q64.96 number representing the sqrt of the ratio of the two assets (token1/token0)
/// at the given tick
function getSqrtRatioAtTick(int24 tick) internal pure returns (uint160 sqrtPriceX96) {
    uint256 absTick = tick &lt; 0 ? uint256(-int256(tick)) : uint256(int256(tick));
    require(absTick &lt;= uint256(MAX_TICK), 'T');

    // 如果第0位非0,则ratio = 0xfffcb933bd6fad37aa2d162d1a594001 ,即:2^128 / 1.0001^0.5
    uint256 ratio = absTick & 0x1 != 0 ? 0xfffcb933bd6fad37aa2d162d1a594001 : 0x100000000000000000000000000000000;
    // 如果第1位非0,则乘以 0xfff97272373d413259a46990580e213a ,即:2^128 / 1.0001^1,因为两个乘数均为Q128.128,最终结果多乘了2^128,因此需要右移128
    if (absTick & 0x2 != 0) ratio = (ratio * 0xfff97272373d413259a46990580e213a) >> 128;
    // 如果第2位非0,则乘以 0xfff2e50f5f656932ef12357cf3c7fdcc ,即:2^128 / 1.0001^2,
    if (absTick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128;
    // 以此类推
    if (absTick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128;
    if (absTick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f6159c9db58835c926644) >> 128;
    if (absTick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98c081472e6896dfb254c0) >> 128;
    if (absTick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c96a3843ec78b326b52861) >> 128;
    if (absTick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99a2a811c461f1969c3053) >> 128;
    if (absTick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128;
    if (absTick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac413176f2b074cf7815e54) >> 128;
    if (absTick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b70005940c7a398e4b70f3) >> 128;
    if (absTick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128;
    if (absTick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128;
    if (absTick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128;
    if (absTick & 0x4000 != 0) ratio = (ratio * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128;
    if (absTick & 0x8000 != 0) ratio = (ratio * 0x31be135f97d08fd981231505542fcfa6) >> 128;
    if (absTick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128;
    if (absTick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedb81196699c329225ee604) >> 128;
    if (absTick & 0x40000 != 0) ratio = (ratio * 0x2216e584f5fa1ea926041bedfe98) >> 128;
    // 如果第19位非0,因为(2^19 = 0x80000=524288),则乘以 0x2216e584f5fa1ea926041bedfe98,即:2^128 / 1.0001^(524288/2)
    // tick的最大值为887272,因此其二进制最多只需要20位表示,从0开始计数,最后一位为第19位。
    if (absTick & 0x80000 != 0) ratio = (ratio * 0x48a170391f7dc42444e8fa2) >> 128;

    if (tick > 0) ratio = type(uint256).max / ratio;

    // this divides by 1&lt;&lt;32 rounding up to go from a Q128.128 to a Q128.96.
    // we then downcast because we know the result always fits within 160 bits due to our tick input constraint
    // we round up in the division so getTickAtSqrtRatio of the output price is always consistent
    sqrtPriceX96 = uint160((ratio >> 32) + (ratio % (1 &lt;&lt; 32) == 0 ? 0 : 1));
}

假设 $i > 0$ 时:

$$ \sqrt{p{Q128128}(i)} = 2^{128} \cdot \sqrt{p(i)} = 2^{128} \cdot 1.0001^{\frac{i}{2}} \ = \frac{2^{128}}{1.0001^{-\frac{i}{2}}} = \frac{2^{256}}{2^{128} \cdot \sqrt{p(-i)}} = \frac{2^{256}}{\sqrt{p{Q128128}(-i)}} $$

因此,只需要算出 $i < 0$ 时的 ratio 值,使用 $2^{256}$ 除以ratio即可得出 $i > 0$ 时,使用Q128.128表示的ratio值:

if (tick > 0) ratio = type(uint256).max / ratio;

代码最后一行将ratio右移32位,转化为Q128.96格式的定点数:

sqrtPriceX96 = uint160((ratio >> 32) + (ratio % (1 &lt;&lt; 32) == 0 ? 0 : 1));

这里算的是开根号价格 $\sqrt{p}$ ,由于价格 $p$ 最大为 $2^{128}$ ,因此 $\sqrt{p}$ 最大为 $2^{64}$ ,也就是整数部分最大只需要64位表示,因此最终的sqrtPriceX96一定可以用160位(64+96,即Q64.96格式的定点数)表示。

getTickAtSqrtRatio

该方法对应白皮书中的公式6.8:

$$ ic = \lfloor \log{\sqrt{1.0001}} \sqrt{P} \rfloor $$

本方法涉及在Solidity中计算对数,根据对数公式,可以推出:

$$ \log_{\sqrt{1.0001}} \sqrt{P} = \frac{log_2{\sqrt{P}}}{log_2{\sqrt{1.0001}}} = log2{\sqrt{P}} \cdot log{\sqrt{1.0001}}{2} $$

由于 $log_{\sqrt{1.0001}}{2}$ 是一个常数,因此我们只需要计算 $log_2{\sqrt{P}}$ 即可。

将输入的参数为 $\sqrt{P}$ 看作 $x$ ,问题转化为求 $log_2{x}$。

把结果分为整数部分 $n$ 和小数部分 $m$ ,则:

$$ n \leq log_2{x} = n + m < n + 1 $$

整数部分

对于 $n$ ,因为:

$$ 2^n \leq x < 2^{n+1} $$

可以通过二分查找找到 $n$ 值:

  • 对于256位的数, $0 \leq n < 256$ ,可以用8位比特表示 $n$
  • 从二进制表示的第8位(k=7)到第1位(k=0)(从最高位到最低位),依次比较 $x$ 是否大于 $2^{2^{k}} - 1$ ,如果大于则标记该位为1,并右移 $2^k$ 位;否则标记0
  • 最终标记后的8位二进制即为 $n$ 值

使用Python代码描述如下:

def find_msb(x):
    msb = 0
    for k in reversed(range(8)): // k = 7, 6, 5. 4, 3, 2, 1, 0
        if x > 2 ** (2 ** k) - 1:
            msb += 2 ** k // 标记该位为1,即加上 2 ** k
            x /= 2 ** (2 ** k) // 右移 2 ** k 位
    return msb

Uniswap v3中的Solidity代码如下(请参考代码中注释):

/// @notice Calculates the greatest tick value such that getRatioAtTick(tick) &lt;= ratio
/// @dev Throws in case sqrtPriceX96 &lt; MIN_SQRT_RATIO, as MIN_SQRT_RATIO is the lowest value getRatioAtTick may
/// ever return.
/// @param sqrtPriceX96 The sqrt ratio for which to compute the tick as a Q64.96
/// @return tick The greatest tick for which the ratio is less than or equal to the input ratio
function getTickAtSqrtRatio(uint160 sqrtPriceX96) internal pure returns (int24 tick) {
    // second inequality must be &lt; because the price can never reach the price at the max tick
    require(sqrtPriceX96 >= MIN_SQRT_RATIO && sqrtPriceX96 &lt; MAX_SQRT_RATIO, 'R');
    uint256 ratio = uint256(sqrtPriceX96) &lt;&lt; 32; // 左移32位,转化为Q128.128格式

    uint256 r = ratio;
    uint256 msb = 0;

    assembly {
        // 如果大于2 ** (2 ** 7) - 1,则保存临时变量:2 ** 7
        let f := shl(7, gt(r, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
        // msb += 2 ** 7
        msb := or(msb, f)
        // r /= (2 ** (2 ** 7)),即右移 2 ** 7
        r := shr(f, r)
    }
    assembly {
        let f := shl(6, gt(r, 0xFFFFFFFFFFFFFFFF))
        msb := or(msb, f)
        r := shr(f, r)
    }
    assembly {
        let f := shl(5, gt(r, 0xFFFFFFFF))
        msb := or(msb, f)
        r := shr(f, r)
    }
    assembly {
        let f := shl(4, gt(r, 0xFFFF))
        msb := or(msb, f)
        r := shr(f, r)
    }
    assembly {
        let f := shl(3, gt(r, 0xFF))
        msb := or(msb, f)
        r := shr(f, r)
    }
    assembly {
        let f := shl(2, gt(r, 0xF))
        msb := or(msb, f)
        r := shr(f, r)
    }
    assembly {
        let f := shl(1, gt(r, 0x3))
        msb := or(msb, f)
        r := shr(f, r)
    }
    assembly {
        let f := gt(r, 0x1)
        msb := or(msb, f)
    }
小数部分

对于小数部分 $m$:

$$ 0 \leq m = log_2{x} - n = log_2{\frac{x}{2^n}} < 1 \quad \text{(1.2)} $$

其中, $n$ 为上文算出的msb,即整数部分。

我们先将 $\frac{x}{2^n}$ 看做一个整体 $r$,则:

$$ 0 \leq log_2{r} < 1 $$

$$ 1 \leq r = \frac{x}{2^n} < 2 $$

这里我们希望求出 $log_2{r}$ ,如果能够将 $log_2{r}$ 表示成一个不断收敛的数列,当小数位足够多时,就可以近似求出 $log_2{r}$ 的值。

根据对数公式,我们可以推导以下两个等式:

$$ log_2{r} = \frac{2 \cdot log_2{r}}{2} = \frac{log_2{r^2}}{2} \quad \text{(1.3)} $$

$$ log_2{r} = log_2{2 \cdot \frac{r}{2}} = 1 + log_2{\frac{r}{2}} \quad \text{(1.4)} $$

我们循环套用上述两个公式,可以整理以下方法:

  1. 因为初始时 $log_2{r} < 1$,因此先应用公式1.3,将问题转化为求 $log_2{r^2}$ ,注意此时基数为 $\frac{1}{2}$ ;
    • 事实上,每一次进入步骤1,新的基数都是上一次基数的 $\frac{1}{2}$ ,比如第二次进入步骤1的基数为 $\frac{1}{4}$ ,以此类推。
  2. 如果 $r^2$ >= 2 ,则应用公式1.4,分离出1,并将问题转化为求 $log_2{\frac{r^2}{2}}$ ;
    • 因为公式1.4是在公式1.3之后判断,因此这里的1需要乘以上一次步骤1的基数,如果是第一次则记录 $\frac{1}{2}$ ,第二次则记录 $\frac{1}{4}$ ,以此类推;
    • 因为 $1 \leq r < 2$ ,且 $2 \leq r^2 < 4$ ,因此 $1 \leq \frac{r^2}{2} < 2$ ,将 $\frac{r^2}{2}$ 看做一个整体 $r$ ,又回到步骤1求解 $log_2{r}$ ,并且 $1 \leq r < 2$ 。
  3. 如果 $r^2 < 2$ ,则回到步骤1继续。

可以将上述步骤总结为以下公式:

$$ log_2{r} = m_1 \cdot \frac{1}{2} + m_2 \cdot \frac{1}{4} + ... + mn \cdot \frac{1}{2^n} = \sum^{\infty}{i=1}(m_i \cdot \frac{1}{2^i}) \quad \text{(1.5)} $$

其中, $\forall m_i \in {0, 1}$。

这其实就是小数的二进制表示法,小数的二进制第一位表示为 $2^{-1}$ ,第二位为 $2^{-2}$ ,以此类推。而在我们上述计算 $log_2{r}$ 的步骤中,如果进入步骤2,则相当于标记该位为1;如果进入步骤3,则相当于标记该位为0。

重复以上步骤的过程,即为确认小数部分二进制位从高位到低位(从左到右)每一位的值,每一个循环确认一位。循环次数越多,计算得出的 $log_2{r}$ 精度越高。

我们继续看 Uniswap v3 中计算小数部分的代码:

        if (msb >= 128) r = ratio >> (msb - 127);
        else r = ratio &lt;&lt; (127 - msb);

这里msb即为整数部分 $n$ 。因为ratio是Q128.128,如果msb >= 128则表示ratio >= 1,因此需要右移整数位数得到小数部分ratio >> msb-127表示左移127位,使用Q129.127表示小数部分;同样,如果msb &lt; 128,则表示ratio &lt; 1,其本身就只有小数部分,因此通过左移127 - msb位,将小数部分凑齐127位,也用Q129.127表示小数部分。

实际上,ratio >> msb即为公式1.2中的 $\frac{x}{2^n}$ ,也就是步骤1中的 $r$ ,在后续迭代算法(步骤1-3)中需要用到。

    int256 log_2 = (int256(msb) - 128) &lt;&lt; 64;

因为msb是基于Q128.128的ratio计算的,int256(msb) - 128表示 $n$ 的真正值。&lt;&lt; 64使用Q192.64表示 $n$ 。 这一行代码实际上是使用Q192.64保存整数部分的值。

下面代码循环计算二进制表示的小数部分的前14位小数:

    assembly {
        // 根据步骤1,计算r^2,右移127位是因为两个r都是Q129.127
        r := shr(127, mul(r, r))
        // 因为1 &lt;= r^2 &lt; 4,仅需2位表示r^2的整数,
        // 因此从右往左数第129和128位表示r^2的整数部分,
        // 右移128位,仅剩129位,
        // 该值为1,则表示r >= 2;该值为0,则表示r &lt; 2
        let f := shr(128, r)
        // 如果f == 1,则log_2 += Q192.64的1/2
        log_2 := or(log_2, shl(63, f))
        // 根据步骤2(即公式1.4),如果r >= 2(即f == 1),则r /= 2;否则不操作,即步骤3
        r := shr(f, r)
    }
    // 重复进行上述过程
    assembly {
        r := shr(127, mul(r, r))
        let f := shr(128, r)
        log_2 := or(log_2, shl(62, f))
        r := shr(f, r)
    }
    assembly {
        r := shr(127, mul(r, r))
        let f := shr(128, r)
        log_2 := or(log_2, shl(61, f))
        r := shr(f, r)
    }
    assembly {
        r := shr(127, mul(r, r))
        let f := shr(128, r)
        log_2 := or(log_2, shl(60, f))
        r := shr(f, r)
    }
    assembly {
        r := shr(127, mul(r, r))
        let f := shr(128, r)
        log_2 := or(log_2, shl(59, f))
        r := shr(f, r)
    }
    assembly {
        r := shr(127, mul(r, r))
        let f := shr(128, r)
        log_2 := or(log_2, shl(58, f))
        r := shr(f, r)
    }
    assembly {
        r := shr(127, mul(r, r))
        let f := shr(128, r)
        log_2 := or(log_2, shl(57, f))
        r := shr(f, r)
    }
    assembly {
        r := shr(127, mul(r, r))
        let f := shr(128, r)
        log_2 := or(log_2, shl(56, f))
        r := shr(f, r)
    }
    assembly {
        r := shr(127, mul(r, r))
        let f := shr(128, r)
        log_2 := or(log_2, shl(55, f))
        r := shr(f, r)
    }
    assembly {
        r := shr(127, mul(r, r))
        let f := shr(128, r)
        log_2 := or(log_2, shl(54, f))
        r := shr(f, r)
    }
    assembly {
        r := shr(127, mul(r, r))
        let f := shr(128, r)
        log_2 := or(log_2, shl(53, f))
        r := shr(f, r)
    }
    assembly {
        r := shr(127, mul(r, r))
        let f := shr(128, r)
        log_2 := or(log_2, shl(52, f))
        r := shr(f, r)
    }
    assembly {
        r := shr(127, mul(r, r))
        let f := shr(128, r)
        log_2 := or(log_2, shl(51, f))
        r := shr(f, r)
    }
    assembly {
        r := shr(127, mul(r, r))
        let f := shr(128, r)
        log_2 := or(log_2, shl(50, f))
    }

上述计算的log_2即为Q192.64表示的 $log_2{\sqrt{P}}$ ,精度为 $2^{-14}$ 。

    int256 log_sqrt10001 = log_2 * 255738958999603826347141; // 128.128 number

因为:

$$ \log_{\sqrt{1.0001}} \sqrt{P} = \frac{log_2{\sqrt{P}}}{log_2{\sqrt{1.0001}}} = log2{\sqrt{P}} \cdot log{\sqrt{1.0001}}{2} $$

这里255738958999603826347141即为 $log_{\sqrt{1.0001}}{2} \cdot 2^{64}$ ,两个Q192.64乘以的结果为Q128.64(不会发生溢出)。

由于这里算出的 $log_2{\sqrt{P}}$ 精度为 $2^{-14}$ ,乘以255738958999603826347141后误差进一步放大,因此需要修正并确保结果是最接近给定价格的tick。

    int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247210) >> 128);
    int24 tickHi = int24((log_sqrt10001 + 291339464771989622907027621153398088495) >> 128);

    tick = tickLow == tickHi ? tickLow : getSqrtRatioAtTick(tickHi) &lt;= sqrtPriceX96 ? tickHi : tickLow;

其中,3402992956809132418596140100660247210表示0.01000049749154292 &lt;&lt; 128291339464771989622907027621153398088495表示0.8561697375276566 &lt;&lt; 128

参考abdk的这篇文章,当精度为 $2^{-14}$ 时,tick的最小误差为 $− 0.85617$ ,最大误差为 $0.0100005$ 。同时,这篇文章也从理论上证明了,只有当精度等于(或高于) $2^{-14}$ 时,只需要一次计算即可得出所需的tick值。

我们的目的是寻找满足当前条件的最大tick,使得tick对应的 $\sqrt{P}$ 小于等于传入的值。因此如果补偿后的tickHi满足要求,则优先使用tickHi;否则使用tickLow。

以下是本节参考文章,有兴趣的朋友请扩展阅读:

TickBitmap.sol

TickBitmap使用Bitmap(位图)保存Tick的初始化状态,提供以下几个方法:

position
/// @notice Computes the position in the mapping where the initialized bit for a tick lives
/// @param tick The tick for which to compute the position
/// @return wordPos The key in the mapping containing the word in which the bit is stored
/// @return bitPos The bit position in the word where the flag is stored
function position(int24 tick) private pure returns (int16 wordPos, uint8 bitPos) {
    wordPos = int16(tick >> 8);
    bitPos = uint8(tick % 256);
}

只有能被tickSpacing整除的tick才能记录在位图中,因此此处的参数: $tick = \frac{tick}{tickSpacing}$。

tick类型为int24,其二进制从右到左,从低位到高位,前8位表示bitPos,后16位表示wordPos,如下图所示:

$$ \overbrace{23,...,8}^{wordPos},\overbrace{7,...,0}^{bitPos} $$

tick的bitmap表示为:self[wordPos] ^= 1 &lt;&lt; bitPos

flipTick

tick翻转初始化状态时,如果其位图的值为0,则需要修改为1;否则,修改为0;即对该位“取反”。

/// @notice Flips the initialized state for a given tick from false to true, or vice versa
/// @param self The mapping in which to flip the tick
/// @param tick The tick to flip
/// @param tickSpacing The spacing between usable ticks
function flipTick(
    mapping(int16 => uint256) storage self,
    int24 tick,
    int24 tickSpacing
) internal {
    require(tick % tickSpacing == 0); // ensure that the tick is spaced
    (int16 wordPos, uint8 bitPos) = position(tick / tickSpacing);
    uint256 mask = 1 &lt;&lt; bitPos;
    self[wordPos] ^= mask;
}

首先获取tick对应的wordPosbitPos,由于最后针对bitPos执行按位“异或”操作:

因为1与任何值b(0或1)异或等于~b;0与任何值b(0或1)异或等于b。

  • 对于tick对应的位(bit),mask为1
    • 如果旧值为1,1^1=0,因此tick状态由“初始化”变成“未初始化”;
    • 如果旧值为0,0^1=1,因此tick状态由“未初始化”变成“初始化”
  • 对于非tick对应的位,mask为0
    • 如果旧值为1,1^0=1,因此状态不变
    • 如果旧值为0,0^0=0,因此状态不变

所以,上述代码实现了tick位取反的效果。

nextInitializedTickWithinOneWord

根据参数tick,寻找位图上最近一个已初始化的tick,如未找到,返回本组最后一个未初始化的tick。

/// @notice Returns the next initialized tick contained in the same word (or adjacent word) as the tick that is either
/// to the left (less than or equal to) or right (greater than) of the given tick
/// @param self The mapping in which to compute the next initialized tick
/// @param tick The starting tick
/// @param tickSpacing The spacing between usable ticks
/// @param lte Whether to search for the next initialized tick to the left (less than or equal to the starting tick)
/// @return next The next initialized or uninitialized tick up to 256 ticks away from the current tick
/// @return initialized Whether the next tick is initialized, as the function only searches within up to 256 ticks
function nextInitializedTickWithinOneWord(
    mapping(int16 => uint256) storage self,
    int24 tick,
    int24 tickSpacing,
    bool lte
) internal view returns (int24 next, bool initialized) {
    int24 compressed = tick / tickSpacing;
    if (tick &lt; 0 && tick % tickSpacing != 0) compressed--; // round towards negative infinity

    if (lte) {
        (int16 wordPos, uint8 bitPos) = position(compressed);
        // all the 1s at or to the right of the current bitPos
        uint256 mask = (1 &lt;&lt; bitPos) - 1 + (1 &lt;&lt; bitPos);
        uint256 masked = self[wordPos] & mask;

        // if there are no initialized ticks to the right of or at the current tick, return rightmost in the word
        initialized = masked != 0;
        // overflow/underflow is possible, but prevented externally by limiting both tickSpacing and tick
        next = initialized
            ? (compressed - int24(bitPos - BitMath.mostSignificantBit(masked))) * tickSpacing
            : (compressed - int24(bitPos)) * tickSpacing;
    } else {
        // start from the word of the next tick, since the current tick state doesn't matter
        (int16 wordPos, uint8 bitPos) = position(compressed + 1);
        // all the 1s at or to the left of the bitPos
        uint256 mask = ~((1 &lt;&lt; bitPos) - 1);
        uint256 masked = self[wordPos] & mask;

        // if there are no initialized ticks to the left of the current tick, return leftmost in the word
        initialized = masked != 0;
        // overflow/underflow is possible, but prevented externally by limiting both tickSpacing and tick
        next = initialized
            ? (compressed + 1 + int24(BitMath.leastSignificantBit(masked) - bitPos)) * tickSpacing
            : (compressed + 1 + int24(type(uint8).max - bitPos)) * tickSpacing;
    }
}

如果lte == true,即寻找小于等于当前tick的值,因此问题转化为:寻找低比特位上是否有1

if (lte) {
    (int16 wordPos, uint8 bitPos) = position(compressed);
    // all the 1s at or to the right of the current bitPos
    uint256 mask = (1 &lt;&lt; bitPos) - 1 + (1 &lt;&lt; bitPos);
    uint256 masked = self[wordPos] & mask;
}

其中,mask的值为所有小于等于bitPos的位全部置1,比如bitPos = 7,则mask二进制 = 1111111;masked保留位图中小于等于bitPos的位值,比如self[wordPos] = 110101011,则masked = 110101011 & 1111111 = 000101011

如果masked != 0,则表示当前方向(lte)该wordPos上有初始化的tick;否则,则表示该方向都是未初始化的tick。

// if there are no initialized ticks to the right of or at the current tick, return rightmost in the word
initialized = masked != 0;

如果存在已初始化的tick,则需要定位到masked中最高位的1;如果不存在,则返回当前方向最后一个tick

// overflow/underflow is possible, but prevented externally by limiting both tickSpacing and tick
next = initialized
    ? (compressed - int24(bitPos - BitMath.mostSignificantBit(masked))) * tickSpacing
    : (compressed - int24(bitPos)) * tickSpacing;

BitMath.mostSignificantBit(masked)通过二分查找法找到masked最高位的1,关于该算法的具体说明,可参考本文TickMath对数计算部分。简单而言,mostSignificantBit(masked)会返回一个数n,使得:

$$ 2^n \leq masked < 2^{n+1} $$

比如,如果masked = 000101011mostSignificantBit将返回5,因为最高位的1在(从0开始)第5位:000101011。

compressed - int24(bitPos)表示当前wordPos第一个tickcompressed - int24(bitPos - BitMath.mostSignificantBit(masked))表示该最高位bitPos对应的tick* tickSpacing将恢复到原始tick值,因为保存位图时,tick需要先除以tickSpacing

同样,如果向大于当前tick方向寻找第一个已初始化的tick时,方法和上述类似,只是mostSignificantBit需要换成leastSignificantBit,即从tick比特位开始(不含),往高位寻找第一个bitPos位为1的tick

else {
    // start from the word of the next tick, since the current tick state doesn't matter
    (int16 wordPos, uint8 bitPos) = position(compressed + 1);
    // all the 1s at or to the left of the bitPos
    uint256 mask = ~((1 &lt;&lt; bitPos) - 1);
    uint256 masked = self[wordPos] & mask;

    // if there are no initialized ticks to the left of the current tick, return leftmost in the word
    initialized = masked != 0;
    // overflow/underflow is possible, but prevented externally by limiting both tickSpacing and tick
    next = initialized
        ? (compressed + 1 + int24(BitMath.leastSignificantBit(masked) - bitPos)) * tickSpacing
        : (compressed + 1 + int24(type(uint8).max - bitPos)) * tickSpacing;
}

Position.sol

Position.sol管理头寸相关信息,包括以下方法:

  • get:获取头寸对象
  • update:更新头寸

一个头寸(Position)可由“所有者”owner、“区间低点”tickLower和“区间高点”tickUpper唯一确定,对于同一个交易对池子,每个用户可以创建多个不同价格区间的头寸,但只能创建一个相同价格区间的头寸;不同用户可以创建相同价格区间的头寸。

get

根据ownertickLowertickUpper返回一个头寸对象:

/// @notice Returns the Info struct of a position, given an owner and position boundaries
/// @param self The mapping containing all user positions
/// @param owner The address of the position owner
/// @param tickLower The lower tick boundary of the position
/// @param tickUpper The upper tick boundary of the position
/// @return position The position info struct of the given owners' position
function get(
    mapping(bytes32 => Info) storage self,
    address owner,
    int24 tickLower,
    int24 tickUpper
) internal view returns (Position.Info storage position) {
    position = self[keccak256(abi.encodePacked(owner, tickLower, tickUpper))];
}
update

更新头寸的流动性和可取回代币,注意,该方法只会在mintburn时被触发,swap并不会更新头寸信息。

/// @notice Credits accumulated fees to a user's position
/// @param self The individual position to update
/// @param liquidityDelta The change in pool liquidity as a result of the position update
/// @param feeGrowthInside0X128 The all-time fee growth in token0, per unit of liquidity, inside the position's tick boundaries
/// @param feeGrowthInside1X128 The all-time fee growth in token1, per unit of liquidity, inside the position's tick boundaries
function update(
    Info storage self,
    int128 liquidityDelta,
    uint256 feeGrowthInside0X128,
    uint256 feeGrowthInside1X128
) internal {
    Info memory _self = self;

    uint128 liquidityNext;
    if (liquidityDelta == 0) {
        require(_self.liquidity > 0, 'NP'); // disallow pokes for 0 liquidity positions
        liquidityNext = _self.liquidity;
    } else {
        liquidityNext = LiquidityMath.addDelta(_self.liquidity, liquidityDelta);
    }

更新流动性:

  • 如果是mint,则liquidityDelta > 0
  • 如果是burn,则liquidityDelta &lt; 0
    // calculate accumulated fees
    uint128 tokensOwed0 =
        uint128(
            FullMath.mulDiv(
                feeGrowthInside0X128 - _self.feeGrowthInside0LastX128,
                _self.liquidity,
                FixedPoint128.Q128
            )
        );
    uint128 tokensOwed1 =
        uint128(
            FullMath.mulDiv(
                feeGrowthInside1X128 - _self.feeGrowthInside1LastX128,
                _self.liquidity,
                FixedPoint128.Q128
            )
        );

根据头寸区间自上一次更新后的每流动性手续费增长值,分别计算token0token1的应收手续费。

    // update the position
    if (liquidityDelta != 0) self.liquidity = liquidityNext;
    self.feeGrowthInside0LastX128 = feeGrowthInside0X128;
    self.feeGrowthInside1LastX128 = feeGrowthInside1X128;
    if (tokensOwed0 > 0 || tokensOwed1 > 0) {
        // overflow is acceptable, have to withdraw before you hit type(uint128).max fees
        self.tokensOwed0 += tokensOwed0;
        self.tokensOwed1 += tokensOwed1;
    }
}

更新头寸流动性、本次每流动性手续费和可取回代币数。

SwapMath.sol

computeSwapStep

SwapMath只有一个方法,即computeSwapStep,计算单步交换的输入输出。

该方法实际上实现的是白皮书6.2.3小节:在一个Tick内交易。在该场景下,流动性 $L$ 不变,仅价格 $\sqrt{P}$ 发生变化。

参数如下:

  • sqrtRatioCurrentX96:当前价格
  • sqrtRatioTargetX96:目标价格
  • liquidity:可用流动性
  • amountRemaining:剩余输入代币
  • feePips:手续费

返回值:

  • sqrtRatioNextX96:交换后价格
  • amountIn:本次交换消耗的输入代币
  • amountOut:本次交换消耗的输出代币
  • feeAmount:交易手续费(含协议手续费)
function computeSwapStep(
    uint160 sqrtRatioCurrentX96,
    uint160 sqrtRatioTargetX96,
    uint128 liquidity,
    int256 amountRemaining,
    uint24 feePips
)
    internal
    pure
    returns (
        uint160 sqrtRatioNextX96,
        uint256 amountIn,
        uint256 amountOut,
        uint256 feeAmount
    )
{
    bool zeroForOne = sqrtRatioCurrentX96 >= sqrtRatioTargetX96;
    bool exactIn = amountRemaining >= 0;

我们在swap章节提到,对于一个交换操作,根据zeroForOneexactIn的值,有四种组合:

zeroForOne exactInput swap
true true 输入固定数量token0,输出最大数量token1
true false 输入最小数量token0,输出固定数量token1
false true 输入固定数量token1,输出最大数量token0
false false 输入最小数量token1,输出固定数量token0
if (exactIn) {
    uint256 amountRemainingLessFee = FullMath.mulDiv(uint256(amountRemaining), 1e6 - feePips, 1e6);
    amountIn = zeroForOne
        ? SqrtPriceMath.getAmount0Delta(sqrtRatioTargetX96, sqrtRatioCurrentX96, liquidity, true)
        : SqrtPriceMath.getAmount1Delta(sqrtRatioCurrentX96, sqrtRatioTargetX96, liquidity, true);
    if (amountRemainingLessFee >= amountIn) sqrtRatioNextX96 = sqrtRatioTargetX96;
    else
        sqrtRatioNextX96 = SqrtPriceMath.getNextSqrtPriceFromInput(
            sqrtRatioCurrentX96,
            liquidity,
            amountRemainingLessFee,
            zeroForOne
        );
}

如果是输入固定数量,则交易手续费需要从输入代币中扣除。

因为feePips的单位是百分之一基点,即 $\frac{1}{10^6}$ ,因此,按照如下公式扣除手续费:

$$ amountRemaining \cdot (1 - \frac{feePips}{10^6}) $$

使用getAmount0DeltagetAmount1Delta,根据当前价格、目标价格和可用流动性计算所需的输入代币数量amountIn

  • 如果从token0交换token1,则输入代币为token0,因此计算amount0
  • 如果从token1交换token0,则输入代币为token1,因此计算amount1

注意,方法的最后一个参数roundUp,当计算amountIn时需要设置roundUp = true,也就是合约只能多收钱,而不能少收,否则合约资金将出现损失;同样,当计算amountOut时设置roundUp = false,也就是合约可以少付钱,而不能多付。

  • 如果可用代币数量大于amountIn,则表示该步交易可以完成,因此交换后的价格等于目标价格
  • 否则,根据当前价格,可用流动性和可用代币amountRemainingLessFee,计算交换后价格,我们在SqrtPriceMath.getNextSqrtPriceFromInput会具体介绍计算方法
else {
    amountOut = zeroForOne
        ? SqrtPriceMath.getAmount1Delta(sqrtRatioTargetX96, sqrtRatioCurrentX96, liquidity, false)
        : SqrtPriceMath.getAmount0Delta(sqrtRatioCurrentX96, sqrtRatioTargetX96, liquidity, false);
    if (uint256(-amountRemaining) >= amountOut) sqrtRatioNextX96 = sqrtRatioTargetX96;
    else
        sqrtRatioNextX96 = SqrtPriceMath.getNextSqrtPriceFromOutput(
            sqrtRatioCurrentX96,
            liquidity,
            uint256(-amountRemaining),
            zeroForOne
        );
}

如果不是输入固定数量,也就是输出固定数量,需要将amountRemaining作为输出代币数量使用:

  • 如果从token0交换token1,则输出代币为token1,因此计算amount1
  • 如果从token1交换token0,则输出代币为token0,因此计算amount0

首先根据当前价格、目标价格和可用流动性,计算可产生的输出代币数量amountOut,注意,这里与上面相反,如果是token0交换token1,需要计算token1的数量,需使用SqrtPriceMath.getAmount1Delta方法。

当表示固定输出代币时,传入的参数amountRemaining是负值:

  • 如果amountOut的绝对值小于应输出代币数量,则表示可完全交换,交换后价格等于目标价格
  • 否则,根据可用输出amountRemaining,计算交换后价格
    bool max = sqrtRatioTargetX96 == sqrtRatioNextX96;

如果交换后价格等于目标价格,则表示完全交换。

// get the input/output amounts
if (zeroForOne) {
    amountIn = max && exactIn
        ? amountIn
        : SqrtPriceMath.getAmount0Delta(sqrtRatioNextX96, sqrtRatioCurrentX96, liquidity, true);
    amountOut = max && !exactIn
        ? amountOut
        : SqrtPriceMath.getAmount1Delta(sqrtRatioNextX96, sqrtRatioCurrentX96, liquidity, false);
} else {
    amountIn = max && exactIn
        ? amountIn
        : SqrtPriceMath.getAmount1Delta(sqrtRatioCurrentX96, sqrtRatioNextX96, liquidity, true);
    amountOut = max && !exactIn
        ? amountOut
        : SqrtPriceMath.getAmount0Delta(sqrtRatioCurrentX96, sqrtRatioNextX96, liquidity, false);
}

计算本次交换所需输入amountIn和所得输出amountOut

  • 如果从token0交换token1
    • 所需输入amountIn
      • 如果完全交换,并且固定输入,则所需输入即为amountIn
      • 否则(非完全交换,或者固定输出),则使用getAmount0Delta,根据价格区间和流动性计算所需输入
    • 所得输出amountOut
      • 如果完全交换,并且固定输出,则所得输出即为amountOut
      • 否则(非完全交换,或者固定输入),则使用getAmount1Delta,根据价格区间和流动性计算所得输出
  • 如果从token1交换token1
    • 所需输入amountIn
      • 如果完全交换,并且固定输入,则所需输入即为amountIn
      • 否则(非完全交换,或者固定输出),则使用getAmount1Delta,根据价格区间和流动性计算所需输入
    • 所得输出amountOut
      • 如果完全交换,并且固定输出,则所得输出即为amountOut
      • 否则(非完全交换,或者固定输入),则使用getAmount0Delta,根据价格区间和流动性计算所得输出
// cap the output amount to not exceed the remaining output amount
if (!exactIn && amountOut > uint256(-amountRemaining)) {
    amountOut = uint256(-amountRemaining);
}

确认所得输出没有超过指定输出。

if (exactIn && sqrtRatioNextX96 != sqrtRatioTargetX96) {
    // we didn't reach the target, so take the remainder of the maximum input as fee
    feeAmount = uint256(amountRemaining) - amountIn;
} else {
    feeAmount = FullMath.mulDivRoundingUp(amountIn, feePips, 1e6 - feePips);
}

计算交易手续费(包括协议手续费):

  • 如果固定输入,并且没有达到目标价格,相当于是最后一次交换,则原始输入代币amountRemaining扣除本次交换所需输入amountIn,即为手续费;
  • 否则,需要根据amountIn计算手续费;注意,除了上述最后一次交换外,这里的amountInamountOut都是不包括手续费的,因此计算手续费需要除以1e6 - feePips,而非1e6

SqrtPriceMath.sol

getNextSqrtPriceFromAmount0RoundingUp

根据当前价格、liquidity和 $\Delta{x}$ ,计算目标价格。

根据白皮书公式6.16:

$$ \Delta{x} = \Delta{\frac{1}{\sqrt{P}}} \cdot L $$

假设 $\sqrt{P_a} > \sqrt{P_b}$ ,则 $x_a < x_b$ :

$$ \Delta{x} = x_b - x_a $$

如果已知 $\sqrt{P_a}$ 计算 $\sqrt{P_b}$ ,则:

$$ \frac{1}{\sqrt{P_b}} = \frac{\Delta{x}}{L} + \frac{1}{\sqrt{P_a}} = \frac{1}{L} \cdot (\Delta{x} + \frac{L}{\sqrt{P_a}}) \quad \text{(1.1)} $$

$$ \sqrt{P_b} = \frac{L}{\Delta{x} + \frac{L}{\sqrt{P_a}}} \quad \text{(1.2)} $$

$$ {\sqrt{P_b}} = \frac{L \cdot \sqrt{P_a}}{L + \Delta{x} \cdot \sqrt{P_a}} \quad \text{(1.3)} $$

如果已知 $\sqrt{P_b}$ 计算 $\sqrt{P_a}$ ,则:

$$ \frac{1}{\sqrt{P_a}} = \frac{1}{\sqrt{P_b}} - \frac{\Delta{x}}{L} \quad \text{(1.4)} $$

$$ {\sqrt{P_a}} = \frac{L \cdot \sqrt{P_b}}{L - \Delta{x} \cdot \sqrt{P_b}} \quad \text{(1.5)} $$

/// @notice Gets the next sqrt price given a delta of token0
/// @dev Always rounds up, because in the exact output case (increasing price) we need to move the price at least
/// far enough to get the desired output amount, and in the exact input case (decreasing price) we need to move the
/// price less in order to not send too much output.
/// The most precise formula for this is liquidity * sqrtPX96 / (liquidity +- amount * sqrtPX96),
/// if this is impossible because of overflow, we calculate liquidity / (liquidity / sqrtPX96 +- amount).
/// @param sqrtPX96 The starting price, i.e. before accounting for the token0 delta
/// @param liquidity The amount of usable liquidity
/// @param amount How much of token0 to add or remove from virtual reserves
/// @param add Whether to add or remove the amount of token0
/// @return The price after adding or removing amount, depending on add
function getNextSqrtPriceFromAmount0RoundingUp(
    uint160 sqrtPX96,
    uint128 liquidity,
    uint256 amount,
    bool add
) internal pure returns (uint160) {
    // we short circuit amount == 0 because the result is otherwise not guaranteed to equal the input price
    if (amount == 0) return sqrtPX96;
    uint256 numerator1 = uint256(liquidity) &lt;&lt; FixedPoint96.RESOLUTION;

    if (add) {
        uint256 product;
        if ((product = amount * sqrtPX96) / amount == sqrtPX96) {
            uint256 denominator = numerator1 + product;
            if (denominator >= numerator1)
                // always fits in 160 bits
                return uint160(FullMath.mulDivRoundingUp(numerator1, sqrtPX96, denominator));
        }

        return uint160(UnsafeMath.divRoundingUp(numerator1, (numerator1 / sqrtPX96).add(amount)));
    } else {
        uint256 product;
        // if the product overflows, we know the denominator underflows
        // in addition, we must check that the denominator does not underflow
        require((product = amount * sqrtPX96) / amount == sqrtPX96 && numerator1 > product);
        uint256 denominator = numerator1 - product;
        return FullMath.mulDivRoundingUp(numerator1, sqrtPX96, denominator).toUint160();
    }
}
  • add = true时,即已知 $\sqrt{P_a}$ 计算 $\sqrt{P_b}$
    • 如果 $\Delta{x} \cdot \sqrt{P_a}$ 没有发生溢出,则使用公式1.3计算 $\sqrt{P_b}$ ,因为这种方式精度最高
    • 否则,使用公式1.2计算 $\sqrt{P_b}$
  • add = false时,即已知 $\sqrt{P_b}$ ,根据上述公式1.5计算 $\sqrt{P_a}$
getNextSqrtPriceFromAmount1RoundingDown

根据当前价格、liquidity和 $\Delta{y}$ ,计算目标价格。

根据白皮书公式6.13:

$$ \Delta{\sqrt{P}} = \frac{\Delta{y}}{L} \quad \text{(6.13)} $$

假设 $\sqrt{P_a} > \sqrt{P_b}$ ,则 $y_a > y_b$:

$$ \Delta{y} = y_a - y_b $$

如果已知 $\sqrt{P_b}$ 计算 $\sqrt{P_a}$ ,则:

$$ \sqrt{P_a} = \sqrt{P_b} + \frac{\Delta{y}}{L} \quad \text{(1.6)} $$

如果已知 $\sqrt{P_a}$ 计算 $\sqrt{P_b}$ ,则:

$$ \sqrt{P_b} = \sqrt{P_a} - \frac{\Delta{y}}{L} \quad \text{(1.7)} $$

/// @notice Gets the next sqrt price given a delta of token1
/// @dev Always rounds down, because in the exact output case (decreasing price) we need to move the price at least
/// far enough to get the desired output amount, and in the exact input case (increasing price) we need to move the
/// price less in order to not send too much output.
/// The formula we compute is within &lt;1 wei of the lossless version: sqrtPX96 +- amount / liquidity
/// @param sqrtPX96 The starting price, i.e., before accounting for the token1 delta
/// @param liquidity The amount of usable liquidity
/// @param amount How much of token1 to add, or remove, from virtual reserves
/// @param add Whether to add, or remove, the amount of token1
/// @return The price after adding or removing `amount`
function getNextSqrtPriceFromAmount1RoundingDown(
    uint160 sqrtPX96,
    uint128 liquidity,
    uint256 amount,
    bool add
) internal pure returns (uint160) {
    // if we're adding (subtracting), rounding down requires rounding the quotient down (up)
    // in both cases, avoid a mulDiv for most inputs
    if (add) {
        uint256 quotient =
            (
                amount &lt;= type(uint160).max
                    ? (amount &lt;&lt; FixedPoint96.RESOLUTION) / liquidity
                    : FullMath.mulDiv(amount, FixedPoint96.Q96, liquidity)
            );

        return uint256(sqrtPX96).add(quotient).toUint160();
    } else {
        uint256 quotient =
            (
                amount &lt;= type(uint160).max
                    ? UnsafeMath.divRoundingUp(amount &lt;&lt; FixedPoint96.RESOLUTION, liquidity)
                    : FullMath.mulDivRoundingUp(amount, FixedPoint96.Q96, liquidity)
            );

        require(sqrtPX96 > quotient);
        // always fits 160 bits
        return uint160(sqrtPX96 - quotient);
    }
}
  • add = true时,即按照公式1.6,根据 $\sqrt{P_b}$ 计算 $\sqrt{P_a}$
  • add = false时,按照公式1.7,根据 $\sqrt{P_a}$ 计算 $\sqrt{P_b}$
getNextSqrtPriceFromInput

根据输入代币计算下一个价格,即添加amountIn数量的代币后的价格:

/// @notice Gets the next sqrt price given an input amount of token0 or token1
/// @dev Throws if price or liquidity are 0, or if the next price is out of bounds
/// @param sqrtPX96 The starting price, i.e., before accounting for the input amount
/// @param liquidity The amount of usable liquidity
/// @param amountIn How much of token0, or token1, is being swapped in
/// @param zeroForOne Whether the amount in is token0 or token1
/// @return sqrtQX96 The price after adding the input amount to token0 or token1
function getNextSqrtPriceFromInput(
    uint160 sqrtPX96,
    uint128 liquidity,
    uint256 amountIn,
    bool zeroForOne
) internal pure returns (uint160 sqrtQX96) {
    require(sqrtPX96 > 0);
    require(liquidity > 0);

    // round to make sure that we don't pass the target price
    return
        zeroForOne
            ? getNextSqrtPriceFromAmount0RoundingUp(sqrtPX96, liquidity, amountIn, true)
            : getNextSqrtPriceFromAmount1RoundingDown(sqrtPX96, liquidity, amountIn, true);
}
getNextSqrtPriceFromOutput

根据输出代币计算下一个价格,即移除amountOut数量的代币后的价格:

/// @notice Gets the next sqrt price given an output amount of token0 or token1
/// @dev Throws if price or liquidity are 0 or the next price is out of bounds
/// @param sqrtPX96 The starting price before accounting for the output amount
/// @param liquidity The amount of usable liquidity
/// @param amountOut How much of token0, or token1, is being swapped out
/// @param zeroForOne Whether the amount out is token0 or token1
/// @return sqrtQX96 The price after removing the output amount of token0 or token1
function getNextSqrtPriceFromOutput(
    uint160 sqrtPX96,
    uint128 liquidity,
    uint256 amountOut,
    bool zeroForOne
) internal pure returns (uint160 sqrtQX96) {
    require(sqrtPX96 > 0);
    require(liquidity > 0);

    // round to make sure that we pass the target price
    return
        zeroForOne
            ? getNextSqrtPriceFromAmount1RoundingDown(sqrtPX96, liquidity, amountOut, false)
            : getNextSqrtPriceFromAmount0RoundingUp(sqrtPX96, liquidity, amountOut, false);
}
getAmount0Delta

该方法计算白皮书中的公式6.16:

$$ \Delta{x} = \Delta{\frac{1}{\sqrt{P}}} \cdot L $$

展开公式为:

$$ amount0 = x_b - x_a = L \cdot (\frac{1}{\sqrt{P_b}} - \frac{1}{\sqrt{P_a}}) = L \cdot (\frac{\sqrt{P_a} - \sqrt{P_b}}{\sqrt{P_a} \cdot \sqrt{P_b}}) $$

/// @notice Gets the amount0 delta between two prices
/// @dev Calculates liquidity / sqrt(lower) - liquidity / sqrt(upper),
/// i.e. liquidity * (sqrt(upper) - sqrt(lower)) / (sqrt(upper) * sqrt(lower))
/// @param sqrtRatioAX96 A sqrt price
/// @param sqrtRatioBX96 Another sqrt price
/// @param liquidity The amount of usable liquidity
/// @param roundUp Whether to round the amount up or down
/// @return amount0 Amount of token0 required to cover a position of size liquidity between the two passed prices
function getAmount0Delta(
    uint160 sqrtRatioAX96,
    uint160 sqrtRatioBX96,
    uint128 liquidity,
    bool roundUp
) internal pure returns (uint256 amount0) {
    if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);

    uint256 numerator1 = uint256(liquidity) &lt;&lt; FixedPoint96.RESOLUTION;
    uint256 numerator2 = sqrtRatioBX96 - sqrtRatioAX96;

    require(sqrtRatioAX96 > 0);

    return
        roundUp
            ? UnsafeMath.divRoundingUp(
                FullMath.mulDivRoundingUp(numerator1, numerator2, sqrtRatioBX96),
                sqrtRatioAX96
            )
            : FullMath.mulDiv(numerator1, numerator2, sqrtRatioBX96) / sqrtRatioAX96;
}
getAmount1Delta

同样,该方法计算白皮书公式6.7:

$$ L = \frac{\Delta{Y}}{\Delta{\sqrt{P}}} $$

展开公式为:

$$ amount1 = y_b - y_a = L \cdot \Delta{\sqrt{P}} = L \cdot (\sqrt{P_b} - \sqrt{P_a}) $$

/// @notice Gets the amount1 delta between two prices
/// @dev Calculates liquidity * (sqrt(upper) - sqrt(lower))
/// @param sqrtRatioAX96 A sqrt price
/// @param sqrtRatioBX96 Another sqrt price
/// @param liquidity The amount of usable liquidity
/// @param roundUp Whether to round the amount up, or down
/// @return amount1 Amount of token1 required to cover a position of size liquidity between the two passed prices
function getAmount1Delta(
    uint160 sqrtRatioAX96,
    uint160 sqrtRatioBX96,
    uint128 liquidity,
    bool roundUp
) internal pure returns (uint256 amount1) {
    if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);

    return
        roundUp
            ? FullMath.mulDivRoundingUp(liquidity, sqrtRatioBX96 - sqrtRatioAX96, FixedPoint96.Q96)
            : FullMath.mulDiv(liquidity, sqrtRatioBX96 - sqrtRatioAX96, FixedPoint96.Q96);

Oracle.sol

本合约定义预言机相关方法。

在交易对合约创建时,默认初始化长度为1的数组用于存储观测点数据;任何用户都可以调用UniswapV3Pool.solincreaseObservationCardinalityNext方法扩展预言机的观测点空间,但需要承担扩展空间带来的手续费。

一个预言机观测点包括以下内容:

  • blockTimestamp:该观测点写入时的时间
  • tickCumulative:截止该观测点时间的累计tick
  • secondsPerLiquidityCumulativeX128:截止该观测点的累计每流动性持续时间
  • initialized:观测点是否初始化

观测点结构定义如下:

struct Observation {
    // the block timestamp of the observation
    uint32 blockTimestamp;
    // the tick accumulator, i.e. tick * time elapsed since the pool was first initialized
    int56 tickCumulative;
    // the seconds per liquidity, i.e. seconds elapsed / max(1, liquidity) since the pool was first initialized
    uint160 secondsPerLiquidityCumulativeX128;
    // whether or not the observation is initialized
    bool initialized;
}

本合约包含以下方法:

  • transform:基于上一个观测点,返回新观测点对象(但是不写入观测点)
  • initialize:初始化观测点数组
  • write:写入一个观测点
  • grow:扩展预言机观测点空间
  • lte:判断两个timestamp大小
  • binarySearch:二分查找指定时间的观测点边界
  • getSurroundingObservations:获取指定时间的观测点边界
  • observeSingle:获取指定时间的观测点数据
  • observe:批量获取指定时间的观测点数据
transform

基于上一个观测点,返回临时观测点对象,但是不写入观测点。

function transform(
    Observation memory last,
    uint32 blockTimestamp,
    int24 tick,
    uint128 liquidity
) private pure returns (Observation memory) {
    uint32 delta = blockTimestamp - last.blockTimestamp;
    return
        Observation({
            blockTimestamp: blockTimestamp,
            tickCumulative: last.tickCumulative + int56(tick) * delta,
            secondsPerLiquidityCumulativeX128: last.secondsPerLiquidityCumulativeX128 +
                ((uint160(delta) &lt;&lt; 128) / (liquidity > 0 ? liquidity : 1)),
            initialized: true
        });
}

首先,计算当前时间与上一个观测点的时间差:delta = blockTimestamp - last.blockTimestamp

接着主要计算tickCumulativesecondsPerLiquidityCumulativeX128,

其中:tickCumulative: last.tickCumulative + int56(tick) * delta

根据白皮书公式5.3-5.5:

$$ \log{1.0001}(P{t_1,t2}) = \frac{\sum{i=t_1}^{t2} \log{1.0001}(P_i)}{t_2 - t_1} \quad \text{(5.3)} $$

$$ \log{1.0001}(P{t_1,t2}) = \frac{a{t2} - a{t_1}}{t_2 - t_1} \quad \text{(5.4)} $$

$$ P_{t_1,t2} = 1.0001^{\frac{a{t2} - a{t_1}}{t_2 - t_1}} \quad \text{(5.5)} $$

这里保存的tickCumulative即为 $a_{t_n}$ ,其对应的公式为:

$$ tickCumulative = \sum_{i=0}^{tn} \log{1.0001}(P_i) $$

同样,每流动性持续时间secondsPerLiquidityCumulative为:

$$ secondsPerLiquidityCumulative = \sum_{i=0}^{n} \frac{t_i}{L_i} $$

initialize

初始化预言机存储空间,设置第一个slot

/// @notice Initialize the oracle array by writing the first slot. Called once for the lifecycle of the observations array
/// @param self The stored oracle array
/// @param time The time of the oracle initialization, via block.timestamp truncated to uint32
/// @return cardinality The number of populated elements in the oracle array
/// @return cardinalityNext The new length of the oracle array, independent of population
function initialize(Observation[65535] storage self, uint32 time)
    internal
    returns (uint16 cardinality, uint16 cardinalityNext)
{
    self[0] = Observation({
        blockTimestamp: time,
        tickCumulative: 0,
        secondsPerLiquidityCumulativeX128: 0,
        initialized: true
    });
    return (1, 1);
}

默认返回的cardinalitycardinalityNext都为1,即仅能存放一个观测点数据。

该方法只能被调用一次,实际上是在UniswapV3Pool.solinitialize方法中调用:

(uint16 cardinality, uint16 cardinalityNext) = observations.initialize(_blockTimestamp());
write

写入一次观测点数据。根据之前的描述,只有在UniswapV3Pool发生mintburnswap操作时,才可能触发写入操作。

可以将预言机观测点数组看作一个循环列表,可写入空间由cardinalitycardinalityNext决定;当数组空间写满以后,会继续从0位置开始覆盖写。

本方法的参数如下:

  • self:预言机观测点数组
  • index:最后一次写入的观测点索引,从0开始
  • blockTimestamp:待添加观测点的时间
  • tick:待添加观测点的tick
  • liquidity:待添加观测点时间的全局可用流动性
  • cardinality:观测点数组当前长度(可写入空间)
  • cardinalityNext:观测点数组(扩展后的)最新长度
function write(
    Observation[65535] storage self,
    uint16 index,
    uint32 blockTimestamp,
    int24 tick,
    uint128 liquidity,
    uint16 cardinality,
    uint16 cardinalityNext
) internal returns (uint16 indexUpdated, uint16 cardinalityUpdated) {
    Observation memory last = self[index];

    // early return if we've already written an observation this block
    if (last.blockTimestamp == blockTimestamp) return (index, cardinality);

如果新观测点时间与最后一次观测点时间相同,则直接返回,确保每个区块最多只能写入一次观测点。

    // if the conditions are right, we can bump the cardinality
    if (cardinalityNext > cardinality && index == (cardinality - 1)) {
        cardinalityUpdated = cardinalityNext;
    } else {
        cardinalityUpdated = cardinality;
    }
  • 如果cardinalityNext > cardinality,则表示预言机数组被扩容过;如果index == (cardinality - 1)即上一次写入的位置是最后一个观测点,则本次需要继续写入扩容后的空间,因此cardinalityUpdated使用扩容后的数组长度cardinalityNext
  • 否则继续使用旧的数组长度cardinality,因为还未写满。
    indexUpdated = (index + 1) % cardinalityUpdated;

更新本次写入观测点数组的索引indexUpdated% cardinalityUpdated是为了计算循环写的索引。

    self[indexUpdated] = transform(last, blockTimestamp, tick, liquidity);

调用transform方法计算最新的观测点数据,并写入观测点数组的indexUpdated位置。

grow

扩容观测点数组,增加可写入的观测点数量。由于合约默认只能保存1个观测点,为了能够支持更多观测点,任何用户都可以手动调用合约以扩容观测点数组。

注意,grow方法使用internal修饰,用户实际上是通过UniswapV3Pool.solincreaseObservationCardinalityNext方法进行扩容。

扩容方法会触发SSTORE操作,因此调用该方法的用户需要支付由此带来的gas开销。

/// @notice Prepares the oracle array to store up to `next` observations
/// @param self The stored oracle array
/// @param current The current next cardinality of the oracle array
/// @param next The proposed next cardinality which will be populated in the oracle array
/// @return next The next cardinality which will be populated in the oracle array
function grow(
    Observation[65535] storage self,
    uint16 current,
    uint16 next
) internal returns (uint16) {
    require(current > 0, 'I');
    // no-op if the passed next value isn't greater than the current next value
    if (next &lt;= current) return current;
    // store in each slot to prevent fresh SSTOREs in swaps
    // this data will not be used because the initialized boolean is still false
    for (uint16 i = current; i &lt; next; i++) self[i].blockTimestamp = 1;
    return next;
}
lte

比较两个时间戳的大小。

由于合约使用uint32类型表示时间戳,其最大值 $2^{32}-1 = 4294967295$,对应的时间为February 7, 2106 6:28:15 AM GMT+00:00,如果两个时间ab( $a < b$ )正好位于uint32最大值的两边,b由于溢出,因此 $a > b$,直接比较数值会导致错误的结果,因此需要统一时间。

注:实际上每136年左右就会有溢出问题。

方法接受3个参数:timeab;其中,time为基准时间,ab在逻辑(时间)上小于等于time;方法返回一个bool,表示a是否在逻辑时间点上小于等于b

/// @notice comparator for 32-bit timestamps
/// @dev safe for 0 or 1 overflows, a and b _must_ be chronologically before or equal to time
/// @param time A timestamp truncated to 32 bits
/// @param a A comparison timestamp from which to determine the relative position of `time`
/// @param b From which to determine the relative position of `time`
/// @return bool Whether `a` is chronologically &lt;= `b`
function lte(
    uint32 time,
    uint32 a,
    uint32 b
) private pure returns (bool) {
    // if there hasn't been overflow, no need to adjust
    if (a &lt;= time && b &lt;= time) return a &lt;= b;

    uint256 aAdjusted = a > time ? a : a + 2**32;
    uint256 bAdjusted = b > time ? b : b + 2**32;

    return aAdjusted &lt;= bAdjusted;
}
  • 如果ab都小于等于time,则表示没有发生溢出,因此直接返回a &lt;= b
  • 由于ab在时间线上均小于等于time
    • 如果 $a > time$ ,则表示发生溢出,aAdjusted为补齐2**32后的时间a
    • 同理,bAdjusted为补齐后的时间b
    • 最后比较两个补齐后的时间aAdjustedbAdjusted

因此,该方法在abtime存在0到1个 $2^{32}$ 的时间差时是溢出安全的。

不能跨越两个 $2^{32} - 1$ 。

binarySearch

二分查找指定目标时间的观测点。

参数如下:

  • self:观测点数组
  • time:当前区块时间
  • target:目标时间
  • index:最后一次写入的观测点索引
  • cardinality:观测点数组当前长度(可写入空间)
/// @notice Fetches the observations beforeOrAt and atOrAfter a target, i.e. where [beforeOrAt, atOrAfter] is satisfied.
/// The result may be the same observation, or adjacent observations.
/// @dev The answer must be contained in the array, used when the target is located within the stored observation
/// boundaries: older than the most recent observation and younger, or the same age as, the oldest observation
/// @param self The stored oracle array
/// @param time The current block.timestamp
/// @param target The timestamp at which the reserved observation should be for
/// @param index The index of the observation that was most recently written to the observations array
/// @param cardinality The number of populated elements in the oracle array
/// @return beforeOrAt The observation recorded before, or at, the target
/// @return atOrAfter The observation recorded at, or after, the target
function binarySearch(
    Observation[65535] storage self,
    uint32 time,
    uint32 target,
    uint16 index,
    uint16 cardinality
) private view returns (Observation memory beforeOrAt, Observation memory atOrAfter) {

对于二分查找算法,首先需要确认左右边界点。

    uint256 l = (index + 1) % cardinality; // oldest observation
    uint256 r = l + cardinality - 1; // newest observation

由于最后一次索引为index,因此循环继续右移一位(并取模)即为左边界点l(最老的索引,如果已写满一轮的话);右边界点为l + cardinality - 1,注意,右边界点r没有取模,因为在二分查找中右边节点一定不能小于左边节点。

    uint256 i;
    while (true) {
        i = (l + r) / 2;

        beforeOrAt = self[i % cardinality];

        // we've landed on an uninitialized tick, keep searching higher (more recently)
        if (!beforeOrAt.initialized) {
            l = i + 1;
            continue;
        }

        atOrAfter = self[(i + 1) % cardinality];

如果计算的中点未初始化(即此时数组空间未写满),则使用右半部分区间(往时间点更近的方向)继续进行二分查找。

atOrAfter为右侧紧邻的观测点。

        bool targetAtOrAfter = lte(time, beforeOrAt.blockTimestamp, target);

        // check if we've found the answer!
        if (targetAtOrAfter && lte(time, target, atOrAfter.blockTimestamp)) break;

        if (!targetAtOrAfter) r = i - 1;
        else l = i + 1;
    }
}
  • 如果目标时间target位于beforeOrAtatOrAfter时间之间,则退出二分查找,返回beforeOrAtatOrAfter两个观测点
  • 否则:
    • 如果beforeOrAt时间大于目标时间target,则继续在左半部分(往更小的时间)进行二分查找
    • 如果目标时间target大于atOrAfter时间,则继续往右半部分(往更大的时间)进行二分查找

假设cardinality为10,index为5,我们可以画出几个变量的逻辑关系如下:

getSurroundingObservations

获取目标时间target的观测点数据beforeOrAtatOrAfter,满足target位于[beforeOrAt, atOrAfter]之间。

/// @notice Fetches the observations beforeOrAt and atOrAfter a given target, i.e. where [beforeOrAt, atOrAfter] is satisfied
/// @dev Assumes there is at least 1 initialized observation.
/// Used by observeSingle() to compute the counterfactual accumulator values as of a given block timestamp.
/// @param self The stored oracle array
/// @param time The current block.timestamp
/// @param target The timestamp at which the reserved observation should be for
/// @param tick The active tick at the time of the returned or simulated observation
/// @param index The index of the observation that was most recently written to the observations array
/// @param liquidity The total pool liquidity at the time of the call
/// @param cardinality The number of populated elements in the oracle array
/// @return beforeOrAt The observation which occurred at, or before, the given timestamp
/// @return atOrAfter The observation which occurred at, or after, the given timestamp
function getSurroundingObservations(
    Observation[65535] storage self,
    uint32 time,
    uint32 target,
    int24 tick,
    uint16 index,
    uint128 liquidity,
    uint16 cardinality
) private view returns (Observation memory beforeOrAt, Observation memory atOrAfter) {
    // optimistically set before to the newest observation
    beforeOrAt = self[index];

    // if the target is chronologically at or after the newest observation, we can early return
    if (lte(time, beforeOrAt.blockTimestamp, target)) {
        if (beforeOrAt.blockTimestamp == target) {
            // if newest observation equals target, we're in the same block, so we can ignore atOrAfter
            return (beforeOrAt, atOrAfter);
        } else {
            // otherwise, we need to transform
            return (beforeOrAt, transform(beforeOrAt, target, tick, liquidity));
        }
    }

首先将beforeOrAt设置为最近一次的观测点:

如果beforeOrAt时间小于等于目标时间target

  • 如果等于目标时间,则直接返回beforeOrAt,忽略atOrAfter
  • 如果小于目标时间,则使用transform基于beforeOrAttarget临时生成一个观测点作为atOrAfter
    // now, set before to the oldest observation
    beforeOrAt = self[(index + 1) % cardinality];
    if (!beforeOrAt.initialized) beforeOrAt = self[0];

否则,可以确认最后(最晚)一个观测点的时间大于target

设置beforeOrAt为循环右移一个位置的观测点,即最老的观测点;如果该观测点未初始化,则表示数组没有写满,因此最早的一定是索引为0的观测点。

    // ensure that the target is chronologically at or after the oldest observation
    require(lte(time, beforeOrAt.blockTimestamp, target), 'OLD');

确认target时间大于等于最早的观测点时间,因此此时target一定位于最早的和最晚观测点的时间区间内,可以使用binarySearch进行二分查找。

    // if we've reached this point, we have to binary search
    return binarySearch(self, time, target, index, cardinality);
}
observeSingle

获取指定时间的观测点数据。

方法的参数如下:

  • self:预言机观测点数组
  • time:当前区块时间
  • secondsAgo:距离当前时间多少秒以前的指定时间,根据该时间寻找观测点
  • tick:目标时间的tick(价格)
  • index:最后一次写入的观测点索引
  • liquidity:当前全局可用流动性
  • cardinality:预言机数组当前长度(可写入空间)

返回:

  • tickCumulative:从交易对池子创建以来,截止到secondsAgo的累计tick
  • secondsPerLiquidityCumulativeX128:从交易对池子创建以来,截止到secondsAgo的累计每流动性持续时间
/// @dev Reverts if an observation at or before the desired observation timestamp does not exist.
/// 0 may be passed as `secondsAgo' to return the current cumulative values.
/// If called with a timestamp falling between two observations, returns the counterfactual accumulator values
/// at exactly the timestamp between the two observations.
/// @param self The stored oracle array
/// @param time The current block timestamp
/// @param secondsAgo The amount of time to look back, in seconds, at which point to return an observation
/// @param tick The current tick
/// @param index The index of the observation that was most recently written to the observations array
/// @param liquidity The current in-range pool liquidity
/// @param cardinality The number of populated elements in the oracle array
/// @return tickCumulative The tick * time elapsed since the pool was first initialized, as of `secondsAgo`
/// @return secondsPerLiquidityCumulativeX128 The time elapsed / max(1, liquidity) since the pool was first initialized, as of `secondsAgo`
function observeSingle(
    Observation[65535] storage self,
    uint32 time,
    uint32 secondsAgo,
    int24 tick,
    uint16 index,
    uint128 liquidity,
    uint16 cardinality
) internal view returns (int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) {
    if (secondsAgo == 0) {
        Observation memory last = self[index];
        if (last.blockTimestamp != time) last = transform(last, time, tick, liquidity);
        return (last.tickCumulative, last.secondsPerLiquidityCumulativeX128);
    }

如果secondsAgo == 0,表示取当前时间的观测点。如果当前时间不等于最后一次写入的观测点时间,则使用transform生成一个临时观测点(注意,这里没有写入该观测点),并返回相关数据。

    uint32 target = time - secondsAgo;

    (Observation memory beforeOrAt, Observation memory atOrAfter) =
        getSurroundingObservations(self, time, target, tick, index, liquidity, cardinality);

根据secondsAgo计算目标时间target,使用getSurroundingObservations方法寻找距离目标时间最近的观测点边界beforeOrAtatOrAfter

    if (target == beforeOrAt.blockTimestamp) {
        // we're at the left boundary
        return (beforeOrAt.tickCumulative, beforeOrAt.secondsPerLiquidityCumulativeX128);
    } else if (target == atOrAfter.blockTimestamp) {
        // we're at the right boundary
        return (atOrAfter.tickCumulative, atOrAfter.secondsPerLiquidityCumulativeX128);
    } else {
        // we're in the middle
        uint32 observationTimeDelta = atOrAfter.blockTimestamp - beforeOrAt.blockTimestamp;
        uint32 targetDelta = target - beforeOrAt.blockTimestamp;
        return (
            beforeOrAt.tickCumulative +
                ((atOrAfter.tickCumulative - beforeOrAt.tickCumulative) / observationTimeDelta) *
                targetDelta,
            beforeOrAt.secondsPerLiquidityCumulativeX128 +
                uint160(
                    (uint256(
                        atOrAfter.secondsPerLiquidityCumulativeX128 - beforeOrAt.secondsPerLiquidityCumulativeX128
                    ) * targetDelta) / observationTimeDelta
                )
        );
    }

根据getSurroundingObservations方法,需要优先使用左边界点beforeOrAt

  • 如果目标时间等于beforeOrAt时间,则直接返回该观测点的相关数据
  • 如果目标时间等于atOrAfter时间,则也返回相关数据
  • 如果目标时间介于beforeOrAtatOrAfter之间,则需要根据时间比例计算相关值:
    • observationTimeDeltabeforeOrAtatOrAfter的时间差值(下面用 $\Delta{t}$ 表示),targetDeltabeforeOrAttarget的时间差值
    • 因为 $\Delta{tickCumulative} = tick \cdot \Delta{t}$,则截止到target的值应为: $\frac{\Delta{tickCumulative}}{\Delta{t}} \cdot targetDelta$
    • 同样, $\Delta{secondsPerLiquidityCumulativeX128} = \frac{\Delta{t}}{liquidity}$,则截止到target的值应为: $\frac{\Delta{secondsPerLiquidityCumulativeX128}}{\Delta{t}} \cdot targetDelta$
observe

批量获取指定时间的观测点数据。

该方法主要调用observeSingle获取单个指定时间的观测点数据,然后批量返回。

/// @notice Returns the accumulator values as of each time seconds ago from the given time in the array of `secondsAgos`
/// @dev Reverts if `secondsAgos` > oldest observation
/// @param self The stored oracle array
/// @param time The current block.timestamp
/// @param secondsAgos Each amount of time to look back, in seconds, at which point to return an observation
/// @param tick The current tick
/// @param index The index of the observation that was most recently written to the observations array
/// @param liquidity The current in-range pool liquidity
/// @param cardinality The number of populated elements in the oracle array
/// @return tickCumulatives The tick * time elapsed since the pool was first initialized, as of each `secondsAgo`
/// @return secondsPerLiquidityCumulativeX128s The cumulative seconds / max(1, liquidity) since the pool was first initialized, as of each `secondsAgo`
function observe(
    Observation[65535] storage self,
    uint32 time,
    uint32[] memory secondsAgos,
    int24 tick,
    uint16 index,
    uint128 liquidity,
    uint16 cardinality
) internal view returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s) {
    require(cardinality > 0, 'I');

    tickCumulatives = new int56[](secondsAgos.length);
    secondsPerLiquidityCumulativeX128s = new uint160[](secondsAgos.length);
    for (uint256 i = 0; i &lt; secondsAgos.length; i++) {
        (tickCumulatives[i], secondsPerLiquidityCumulativeX128s[i]) = observeSingle(
            self,
            time,
            secondsAgos[i],
            tick,
            index,
            liquidity,
            cardinality
        );
    }
}
点赞 0
收藏 0
分享
本文参与登链社区写作激励计划 ,好文好收益,欢迎正在阅读的你也加入。

0 条评论

请先 登录 后评论
adshao
adshao
江湖只有他的大名,没有他的介绍。