此文详细介绍了 Uniswap v3 的智能合约,包括核心合约 UniswapV3Factory 和 UniswapV3Pool 的实现与功能,重点讲解了流动性管理、交易对创建、代币交换等操作的实现原理和代码示例,涵盖了预言机的使用及其扩展等技术细节,具有很强的实用性和参考价值。
与Uniswap v2一样,Uniswap v3的合约也分为两类:
如果你希望以用户场景角度阅读本文,请直接从Uniswap-v3-periphery开始,它包含了创建头寸、修改头寸流动性、交换代币等常用功能。
如果你希望从底层核心模块开始阅读,请从Uniswap-v3-core开始。
工厂合约主要包含三个功能:
创建一个Uniswap v3交易对池子,注意,由于Uniswap v3支持不同手续费等级,如0.05%、0.30%、1.00%等,因此一个交易对合约由tokenA
、tokenB
和fee
(手续费)唯一确定。
计算交易对合约还需要:factory工厂合约地址、合约初始化代码的hash。
/// @inheritdoc IUniswapV3Factory
function createPool(
address tokenA,
address tokenB,
uint24 fee
) external override noDelegateCall returns (address pool) {
require(tokenA != tokenB);
(address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA);
require(token0 != address(0));
int24 tickSpacing = feeAmountTickSpacing[fee];
require(tickSpacing != 0);
require(getPool[token0][token1][fee] == address(0));
pool = deploy(address(this), token0, token1, fee, tickSpacing);
getPool[token0][token1][fee] = pool;
// populate mapping in the reverse direction, deliberate choice to avoid the cost of comparing addresses
getPool[token1][token0][fee] = pool;
emit PoolCreated(token0, token1, fee, tickSpacing, pool);
}
因为传入的tokenA
和tokenB
是无序的,首先对tokenA
、tokenB
排序,确保tokenA < tokenB
。
通过手续费等级获取对应的tickSpacing
:
int24 tickSpacing = feeAmountTickSpacing[fee];
我们在《深入理解Uniswap v3白皮书》中介绍过tickSpacing
的作用,每个手续费等级对应一个tickSpacing
,只有被tickSpacing
整除的tick
才允许被初始化,tickSpacing
越大,每个tick
流动性越多,tick
之间滑点越大,但会节省跨tick
操作的gas。这里作为Pool
的参数保存起来。
确认该交易对对应的手续费等级没有创建过:
require(getPool[token0][token1][fee] == address(0));
创建(部署)交易对合约:
pool = deploy(address(this), token0, token1, fee, tickSpacing);
deploy代码如下:
/// @dev Deploys a pool with the given parameters by transiently setting the parameters storage slot and then
/// clearing it after deploying the pool.
/// @param factory The contract address of the Uniswap V3 factory
/// @param token0 The first token of the pool by address sort order
/// @param token1 The second token of the pool by address sort order
/// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
/// @param tickSpacing The spacing between usable ticks
function deploy(
address factory,
address token0,
address token1,
uint24 fee,
int24 tickSpacing
) internal returns (address pool) {
parameters = Parameters({factory: factory, token0: token0, token1: token1, fee: fee, tickSpacing: tickSpacing});
pool = address(new UniswapV3Pool{salt: keccak256(abi.encode(token0, token1, fee))}());
delete parameters;
}
我们在Uniswap v2中提到,为了确保交易对合约地址的可计算性和唯一性,Uniswap v2使用CREATE2
操作码创建交易对合约;从Solidity 0.6.2版本开始(Github PR),支持在new
方法中传递salt
参数实现CREATE2
功能;salt
参数确保了合约地址的唯一性和可计算性。从代码可知,Uniswap v3交易对合约使用token0、token1、fee唯一确定一个交易对合约,比如,根据ETH-USDC 0.05%手续费(以及工厂合约地址、初始化代码hash)等信息,可计算交易对合约地址。
最后,保存交易对合约地址到getPool
变量中:
getPool[token0][token1][fee] = pool;
// populate mapping in the reverse direction, deliberate choice to avoid the cost of comparing addresses
getPool[token1][token0][fee] = pool;
设置工厂合约owner,owner具有以下权限:
首先判断请求由当前owner发起,确认后修改owner:
/// @inheritdoc IUniswapV3Factory
function setOwner(address _owner) external override {
require(msg.sender == owner);
emit OwnerChanged(owner, _owner);
owner = _owner;
}
Uniswap v3默认支持三种手续费等级:0.05%、0.30%和1.00%,对应的fee值分别为500、3000和10000;fee的基本单位是百分之一基点,即0.01 bp = $10^{-6}$。
手续费百分比计算公式为:
$$ f_{ratio} = \frac{fee}{1,000,000} $$
/// @inheritdoc IUniswapV3Factory
function enableFeeAmount(uint24 fee, int24 tickSpacing) public override {
require(msg.sender == owner);
require(fee < 1000000);
// tick spacing is capped at 16384 to prevent the situation where tickSpacing is so large that
// TickBitmap#nextInitializedTickWithinOneWord overflows int24 container from a valid tick
// 16384 ticks represents a >5x price change with ticks of 1 bips
require(tickSpacing > 0 && tickSpacing < 16384);
require(feeAmountTickSpacing[fee] == 0);
feeAmountTickSpacing[fee] = tickSpacing;
emit FeeAmountEnabled(fee, tickSpacing);
}
这是Uniswap v3的主要代码,定义了交易对池子的功能:
此外,factory(工厂合约)owner还可以调用以下两个方法:
创建完交易对后,需要调用initialize
方法初始化合约,才能正常使用交易对功能。
该方法初始化slot0
变量:
/// @inheritdoc IUniswapV3PoolActions
/// @dev not locked because it initializes unlocked
function initialize(uint160 sqrtPriceX96) external override {
require(slot0.sqrtPriceX96 == 0, 'AI');
int24 tick = TickMath.getTickAtSqrtRatio(sqrtPriceX96);
(uint16 cardinality, uint16 cardinalityNext) = observations.initialize(_blockTimestamp());
slot0 = Slot0({
sqrtPriceX96: sqrtPriceX96,
tick: tick,
observationIndex: 0,
observationCardinality: cardinality,
observationCardinalityNext: cardinalityNext,
feeProtocol: 0,
unlocked: true
});
emit Initialize(sqrtPriceX96, tick);
}
slot0
定义如下:
sqrtPriceX96
:交易对当前的开根号价格 $\sqrt{P}$tick
:当前 $\sqrt{P}$ 对应的tick,使用getTickAtSqrtRatio计算得出observationIndex
:最近更新的(预言机)观测点数组序号observationCardinality
:(预言机)观测点数组容量,最大65536,初始时为1observationCardinalityNext
:下一个(预言机)观测点数组容量,如果手动扩容容量,会更新这个值,初始时为1feeProtocol
:协议手续费比例,可以分别为token0
和token1
设置交易手续费中分给协议的比例unlocked
:当前交易对合约是否非锁定状态该方法实现添加流动性功能。实际上,首次添加流动性和后续增加流动性,都会使用该方法。
mint
方法参数如下:
recipient
:头寸接收者(owner)tickLower
:流动性区间低点tickUpper
:流动性区间高点amount
:流动性数量data
:回调参数/// @inheritdoc IUniswapV3PoolActions
/// @dev noDelegateCall is applied indirectly via _modifyPosition
function mint(
address recipient,
int24 tickLower,
int24 tickUpper,
uint128 amount,
bytes calldata data
) external override lock returns (uint256 amount0, uint256 amount1) {
require(amount > 0);
(, int256 amount0Int, int256 amount1Int) =
_modifyPosition(
ModifyPositionParams({
owner: recipient,
tickLower: tickLower,
tickUpper: tickUpper,
liquidityDelta: int256(amount).toInt128()
})
);
amount0 = uint256(amount0Int);
amount1 = uint256(amount1Int);
uint256 balance0Before;
uint256 balance1Before;
if (amount0 > 0) balance0Before = balance0();
if (amount1 > 0) balance1Before = balance1();
IUniswapV3MintCallback(msg.sender).uniswapV3MintCallback(amount0, amount1, data);
if (amount0 > 0) require(balance0Before.add(amount0) <= balance0(), 'M0');
if (amount1 > 0) require(balance1Before.add(amount1) <= balance1(), 'M1');
emit Mint(msg.sender, recipient, tickLower, tickUpper, amount, amount0, amount1);
}
mint
方法主要的逻辑都在_modifyPosition中,其返回的amount0Int
和amount1Int
表示:如果添加amount
数量的流动性,则需要分别向交易对合约转入的token0
和token1
的代币数量。
调用方需在uniswapV3MintCallback
完成代币的转入操作;调用mint
方法的合约需要实现IUniswapV3MintCallback
接口,Uniswap v3在periphery合约的NonfungiblePositionManager.sol
实现该接口。
因为
mint
调用方需要实现接口方法,因此个人ETH账户(EOA)无法调用该方法。
IUniswapV3MintCallback(msg.sender).uniswapV3MintCallback(amount0, amount1, data);
继续来看_modifyPosition
:
/// @dev Effect some changes to a position
/// @param params the position details and the change to the position's liquidity to effect
/// @return position a storage pointer referencing the position with the given owner and tick range
/// @return amount0 the amount of token0 owed to the pool, negative if the pool should pay the recipient
/// @return amount1 the amount of token1 owed to the pool, negative if the pool should pay the recipient
function _modifyPosition(ModifyPositionParams memory params)
private
noDelegateCall
returns (
Position.Info storage position,
int256 amount0,
int256 amount1
)
{
checkTicks(params.tickLower, params.tickUpper);
Slot0 memory _slot0 = slot0; // SLOAD for gas optimization
position = _updatePosition(
params.owner,
params.tickLower,
params.tickUpper,
params.liquidityDelta,
_slot0.tick
);
先通过_updatePosition更新头寸信息,我们在下一节会具体介绍。
if (params.liquidityDelta != 0) {
if (_slot0.tick < params.tickLower) {
// current tick is below the passed range; liquidity can only become in range by crossing from left to
// right, when we'll need _more_ token0 (it's becoming more valuable) so user must provide it
amount0 = SqrtPriceMath.getAmount0Delta(
TickMath.getSqrtRatioAtTick(params.tickLower),
TickMath.getSqrtRatioAtTick(params.tickUpper),
params.liquidityDelta
);
} else if (_slot0.tick < params.tickUpper) {
// current tick is inside the passed range
uint128 liquidityBefore = liquidity; // SLOAD for gas optimization
// write an oracle entry
(slot0.observationIndex, slot0.observationCardinality) = observations.write(
_slot0.observationIndex,
_blockTimestamp(),
_slot0.tick,
liquidityBefore,
_slot0.observationCardinality,
_slot0.observationCardinalityNext
);
amount0 = SqrtPriceMath.getAmount0Delta(
_slot0.sqrtPriceX96,
TickMath.getSqrtRatioAtTick(params.tickUpper),
params.liquidityDelta
);
amount1 = SqrtPriceMath.getAmount1Delta(
TickMath.getSqrtRatioAtTick(params.tickLower),
_slot0.sqrtPriceX96,
params.liquidityDelta
);
liquidity = LiquidityMath.addDelta(liquidityBefore, params.liquidityDelta);
} else {
// current tick is above the passed range; liquidity can only become in range by crossing from right to
// left, when we'll need _more_ token1 (it's becoming more valuable) so user must provide it
amount1 = SqrtPriceMath.getAmount1Delta(
TickMath.getSqrtRatioAtTick(params.tickLower),
TickMath.getSqrtRatioAtTick(params.tickUpper),
params.liquidityDelta
);
}
}
}
代码的下半部分则主要通过getAmount0Delta和getAmount1Delta计算该流动性需要分别提供的token0
和token1
的数量,即amount0
和amount1
。
具体地,当你提供流动性的区间大于当前tick
$i_c$ 时,因为tick
大小与 $\sqrt{P}$(即 $\sqrt{\frac{y}{x}}$ )成正比,意味着在大于 $i_c$ 的区间, $x$ 的价值更高(需要更少的 $x$ ),因此添加流动性时需在该部分提供 $x$ 代币,即amount0
数量的token0
;反之,则提供 $y$ 代币,即amount1
的token1
。
如下所示:
$$ \begin{cases}i_c, ..., \overbrace{i_l, ..., i_u}^{amount0} & \text{$i_c < i_l$}\ \overbrace{i_l, ...}^{amount1}, i_c, \overbrace{..., i_u}^{amount0} & \text{$i_l \leq i_c < i_u$}\ \overbrace{i_l, ..., i_u}^{amount1}, ..., i_c & \text{$i_u \leq i_c$}\end{cases} $$
其中, $i_l$ , $i_u$ 为提供流动性价格区间的边界, $i_c$ 为当前价格对应的tick
。
如果当前价格在区间中,即 $i_l \leq i_c < i_u$ 时,_modifyPosition
会记录一次(预言机)观测点数据,因为此时区间的流动性发生了变化,需要记录每流动性的持续时间secondsPerLiquidityCumulativeX128
:
// write an oracle entry
(slot0.observationIndex, slot0.observationCardinality) = observations.write(
_slot0.observationIndex,
_blockTimestamp(),
_slot0.tick,
liquidityBefore,
_slot0.observationCardinality,
_slot0.observationCardinalityNext
);
在计算amount0
和amount1
后,更新当前交易对的全局活跃流动性liquidity
:
liquidity = LiquidityMath.addDelta(liquidityBefore, params.liquidityDelta);
这个全局流动性会在swap时用到。
_modifyPosition
中的_updatePosition
代码如下:
/// @dev Gets and updates a position with the given liquidity delta
/// @param owner the owner of the position
/// @param tickLower the lower tick of the position's tick range
/// @param tickUpper the upper tick of the position's tick range
/// @param tick the current tick, passed to avoid sloads
function _updatePosition(
address owner,
int24 tickLower,
int24 tickUpper,
int128 liquidityDelta,
int24 tick
) private returns (Position.Info storage position) {
position = positions.get(owner, tickLower, tickUpper);
uint256 _feeGrowthGlobal0X128 = feeGrowthGlobal0X128; // SLOAD for gas optimization
uint256 _feeGrowthGlobal1X128 = feeGrowthGlobal1X128; // SLOAD for gas optimization
// if we need to update the ticks, do it
bool flippedLower;
bool flippedUpper;
if (liquidityDelta != 0) {
uint32 time = _blockTimestamp();
(int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) =
observations.observeSingle(
time,
0,
slot0.tick,
slot0.observationIndex,
liquidity,
slot0.observationCardinality
);
observations.observeSingle
计算从最后一次观测点到现在的累积ticktickCumulative
和累积每份流动性的持续时间secondsPerLiquidityCumulativeX128
。
flippedLower = ticks.update(
tickLower,
tick,
liquidityDelta,
_feeGrowthGlobal0X128,
_feeGrowthGlobal1X128,
secondsPerLiquidityCumulativeX128,
tickCumulative,
time,
false,
maxLiquidityPerTick
);
flippedUpper = ticks.update(
tickUpper,
tick,
liquidityDelta,
_feeGrowthGlobal0X128,
_feeGrowthGlobal1X128,
secondsPerLiquidityCumulativeX128,
tickCumulative,
time,
true,
maxLiquidityPerTick
);
if (flippedLower) {
tickBitmap.flipTick(tickLower, tickSpacing);
}
if (flippedUpper) {
tickBitmap.flipTick(tickUpper, tickSpacing);
}
}
接着使用ticks.update
分别更新tickLower
(价格区间低点)和tickUpper
(价格区间高点)的状态,具体请参考Tick.update。
如果对应tick
的流动性从从0到有,或从有到0,则表示该tick
需要被翻转。如果该tick
未被标记为初始化,则标记为初始化;否则,将其取消初始化;这里用到tickBitmap.flipTick
方法,请参考TickBitmap.flipTick。
(uint256 feeGrowthInside0X128, uint256 feeGrowthInside1X128) =
ticks.getFeeGrowthInside(tickLower, tickUpper, tick, _feeGrowthGlobal0X128, _feeGrowthGlobal1X128);
接着,计算该价格区间的累积每流动性手续费。
position.update(liquidityDelta, feeGrowthInside0X128, feeGrowthInside1X128);
更新头寸(Position)信息,这里主要更新了头寸的应收手续费tokensOwed0
和tokensOwed1
,以及头寸流动性liquidity
,请参考Position.update。
// clear any tick data that is no longer needed
if (liquidityDelta < 0) {
if (flippedLower) {
ticks.clear(tickLower);
}
if (flippedUpper) {
ticks.clear(tickUpper);
}
}
}
如果是移除流动性,并且tick
被翻转,则调用clear清空tick
状态。
最后,回到mint
方法,调用者需要确保在uniswapV3MintCallback
方法中,将这里计算出的amount0
和amount1
数量的token0
和token1
代币转入交易对合约。
总结mint
方法的主要工作如下:
ticks.update
tickBitmap.flipTick
positions.update
observations.write
liquidity
uniswapV3MintCallback
销毁流动性(burn
)的逻辑与添加流动性(mint
)几乎完全一样,唯一的区别是liquidityDelta
是负的。
/// @inheritdoc IUniswapV3PoolActions
/// @dev noDelegateCall is applied indirectly via _modifyPosition
function burn(
int24 tickLower,
int24 tickUpper,
uint128 amount
) external override lock returns (uint256 amount0, uint256 amount1) {
(Position.Info storage position, int256 amount0Int, int256 amount1Int) =
_modifyPosition(
ModifyPositionParams({
owner: msg.sender,
tickLower: tickLower,
tickUpper: tickUpper,
liquidityDelta: -int256(amount).toInt128()
})
);
amount0 = uint256(-amount0Int);
amount1 = uint256(-amount1Int);
if (amount0 > 0 || amount1 > 0) {
(position.tokensOwed0, position.tokensOwed1) = (
position.tokensOwed0 + uint128(amount0),
position.tokensOwed1 + uint128(amount1)
);
}
emit Burn(msg.sender, tickLower, tickUpper, amount, amount0, amount1);
}
这里与mint
使用同一个_modifyPosition方法。
需注意,当销毁(部分)流动性后,代币并没有转回到调用方,而是以未领取代币的形式记在头寸(Position)上。
swap
方法是Uniswap v3代码的核心,该方法实现两个代币的交换,从token0
交换到token1
,或者相反。
相比Uniswap v2的同质化流动性,我们重点关注在swap
过程中,价格如何变化,以及如何影响流动性的。
先来看swap
方法的几个参数:
recipient
:交易后的代币接收者zeroForOne
:如果从token0
交换token1
则为true
,从token1
交换token0
则为false
amountSpecified
: 指定的代币数量,如果为正,表示希望输入的代币数量;如果为负,则表示希望输出的代币数量sqrtPriceLimitX96
:能够承受的价格上限(或下限),格式为Q64.96
;如果从token0
到token1
,则表示swap
过程中的价格下限;如果从token1
到token0
,则表示价格上限;如果价格超过该值,则swap
失败data
:回调参数/// @inheritdoc IUniswapV3PoolActions
function swap(
address recipient,
bool zeroForOne,
int256 amountSpecified,
uint160 sqrtPriceLimitX96,
bytes calldata data
) external override noDelegateCall returns (int256 amount0, int256 amount1) {
require(amountSpecified != 0, 'AS');
Slot0 memory slot0Start = slot0;
require(slot0Start.unlocked, 'LOK');
require(
zeroForOne
? sqrtPriceLimitX96 < slot0Start.sqrtPriceX96 && sqrtPriceLimitX96 > TickMath.MIN_SQRT_RATIO
: sqrtPriceLimitX96 > slot0Start.sqrtPriceX96 && sqrtPriceLimitX96 < TickMath.MAX_SQRT_RATIO,
'SPL'
);
slot0.unlocked = false;
SwapCache memory cache =
SwapCache({
liquidityStart: liquidity,
blockTimestamp: _blockTimestamp(),
feeProtocol: zeroForOne ? (slot0Start.feeProtocol % 16) : (slot0Start.feeProtocol >> 4),
secondsPerLiquidityCumulativeX128: 0,
tickCumulative: 0,
computedLatestObservation: false
});
bool exactInput = amountSpecified > 0;
SwapState memory state =
SwapState({
amountSpecifiedRemaining: amountSpecified,
amountCalculated: 0,
sqrtPriceX96: slot0Start.sqrtPriceX96,
tick: slot0Start.tick,
feeGrowthGlobalX128: zeroForOne ? feeGrowthGlobal0X128 : feeGrowthGlobal1X128,
protocolFee: 0,
liquidity: cache.liquidityStart
});
上面代码主要是初始化状态相关的。
因为 $\sqrt{P} = \sqrt{\frac{y}{x}}$ ,当zeroForOne = true
,即从token0
到token1
时,swap过程中 Pool 的 $x$ 变多, $y$ 变少,因此 $\sqrt{P}$ 逐渐减小,所以指定的价格极限sqrtPriceLimitX96
需要小于当前市场价格sqrtPriceX96
。
另外,需要注意几个关键数据:
state.sqrtPriceX96
为:slot0.sqrtPriceX96
slot0.tick
计算初始价格,因为计算出来的值与slot0.sqrtPriceX96
可能不一致,我们在后面代码会看到,slot0.tick
不能作为当前价格state.liquidity
为:liquidity
,也就是我们在mint或burn时更新的全局可用流动性根据zeroForOne
和exactInput
,可以有四种swap
组合:
zeroForOne | exactInput | swap |
---|---|---|
true | true | 输入固定数量token0 ,输出最大数量token1 |
true | false | 输入最小数量token0 ,输出固定数量token1 |
false | true | 输入固定数量token1 ,输出最大数量token0 |
false | false | 输入最小数量token1 ,输出固定数量token0 |
一个完整的swap
可以由多个step
组成,代码如下:
// continue swapping as long as we haven't used the entire input/output and haven't reached the price limit
while (state.amountSpecifiedRemaining != 0 && state.sqrtPriceX96 != sqrtPriceLimitX96) {
StepComputations memory step;
step.sqrtPriceStartX96 = state.sqrtPriceX96;
(step.tickNext, step.initialized) = tickBitmap.nextInitializedTickWithinOneWord(
state.tick,
tickSpacing,
zeroForOne
);
// ensure that we do not overshoot the min/max tick, as the tick bitmap is not aware of these bounds
if (step.tickNext < TickMath.MIN_TICK) {
step.tickNext = TickMath.MIN_TICK;
} else if (step.tickNext > TickMath.MAX_TICK) {
step.tickNext = TickMath.MAX_TICK;
}
// get the price for the next tick
step.sqrtPriceNextX96 = TickMath.getSqrtRatioAtTick(step.tickNext);
// compute values to swap to the target tick, price limit, or point where input/output amount is exhausted
(state.sqrtPriceX96, step.amountIn, step.amountOut, step.feeAmount) = SwapMath.computeSwapStep(
state.sqrtPriceX96,
(zeroForOne ? step.sqrtPriceNextX96 < sqrtPriceLimitX96 : step.sqrtPriceNextX96 > sqrtPriceLimitX96)
? sqrtPriceLimitX96
: step.sqrtPriceNextX96,
state.liquidity,
state.amountSpecifiedRemaining,
fee
);
if (exactInput) {
state.amountSpecifiedRemaining -= (step.amountIn + step.feeAmount).toInt256();
state.amountCalculated = state.amountCalculated.sub(step.amountOut.toInt256());
} else {
state.amountSpecifiedRemaining += step.amountOut.toInt256();
state.amountCalculated = state.amountCalculated.add((step.amountIn + step.feeAmount).toInt256());
}
// if the protocol fee is on, calculate how much is owed, decrement feeAmount, and increment protocolFee
if (cache.feeProtocol > 0) {
uint256 delta = step.feeAmount / cache.feeProtocol;
step.feeAmount -= delta;
state.protocolFee += uint128(delta);
}
// update global fee tracker
if (state.liquidity > 0)
state.feeGrowthGlobalX128 += FullMath.mulDiv(step.feeAmount, FixedPoint128.Q128, state.liquidity);
// shift tick if we reached the next price
if (state.sqrtPriceX96 == step.sqrtPriceNextX96) {
// if the tick is initialized, run the tick transition
if (step.initialized) {
// check for the placeholder value, which we replace with the actual value the first time the swap
// crosses an initialized tick
if (!cache.computedLatestObservation) {
(cache.tickCumulative, cache.secondsPerLiquidityCumulativeX128) = observations.observeSingle(
cache.blockTimestamp,
0,
slot0Start.tick,
slot0Start.observationIndex,
cache.liquidityStart,
slot0Start.observationCardinality
);
cache.computedLatestObservation = true;
}
int128 liquidityNet =
ticks.cross(
step.tickNext,
(zeroForOne ? state.feeGrowthGlobalX128 : feeGrowthGlobal0X128),
(zeroForOne ? feeGrowthGlobal1X128 : state.feeGrowthGlobalX128),
cache.secondsPerLiquidityCumulativeX128,
cache.tickCumulative,
cache.blockTimestamp
);
// if we're moving leftward, we interpret liquidityNet as the opposite sign
// safe because liquidityNet cannot be type(int128).min
if (zeroForOne) liquidityNet = -liquidityNet;
state.liquidity = LiquidityMath.addDelta(state.liquidity, liquidityNet);
}
state.tick = zeroForOne ? step.tickNext - 1 : step.tickNext;
} else if (state.sqrtPriceX96 != step.sqrtPriceStartX96) {
// recompute unless we're on a lower tick boundary (i.e. already transitioned ticks), and haven't moved
state.tick = TickMath.getTickAtSqrtRatio(state.sqrtPriceX96);
}
}
整理成伪代码(pseudo code)如下:
loop if 剩余代币 != 0 and 当前价格 != 最小(或最大)价格:
// step
初始价格 := 上一个step的价格
下一个tick := 根据当前tick,寻找最近的已初始化的tick,或者本组最后一个未初始化的tick
目标价格 := 根据下一个tick计算的价格
交换后的价格, 消耗的输入代币数量, 得到的输出代币数量, 交易手续费 := 完成一步交换(初始价格, 目标价格, 可用流动性, 剩余代币)
更新 剩余代币
更新 协议手续费
if 交换后价格 == 目标价格:
if tick已初始化:
价格穿越该tick,更新tick相关字段
更新 可用流动性
当前tick := 下一个tick - 1
else if 交换后价格 != 初始价格:
当前tick := 根据交换后价格计算tick
首先需要根据当前tick
寻找下一个tick
,即tickNext
,具体逻辑可参考:tickBitmap.nextInitializedTickWithinOneWord。
计算当前step的目标价格:
// get the price for the next tick
step.sqrtPriceNextX96 = TickMath.getSqrtRatioAtTick(step.tickNext);
计算本次(step)交换的输入输出(即执行一次交换):
// compute values to swap to the target tick, price limit, or point where input/output amount is exhausted
(state.sqrtPriceX96, step.amountIn, step.amountOut, step.feeAmount) = SwapMath.computeSwapStep(
state.sqrtPriceX96,
(zeroForOne ? step.sqrtPriceNextX96 < sqrtPriceLimitX96 : step.sqrtPriceNextX96 > sqrtPriceLimitX96)
? sqrtPriceLimitX96
: step.sqrtPriceNextX96,
state.liquidity,
state.amountSpecifiedRemaining,
fee
);
SwapMath.computeSwapStep
将根据当前价格、目标价格、可用流动性、可用输入代币等数据,计算本次交换能最多成交的输入代币数量(amountIn
),输出代币数量(amountOut
),手续费(feeAmount
)和成交后价格(sqrtRatioNextX96
)。请参考computeSwapStep。
保存本次交易的amountIn
和amountOut
:
if (exactInput) {
state.amountSpecifiedRemaining -= (step.amountIn + step.feeAmount).toInt256();
state.amountCalculated = state.amountCalculated.sub(step.amountOut.toInt256());
} else {
state.amountSpecifiedRemaining += step.amountOut.toInt256();
state.amountCalculated = state.amountCalculated.add((step.amountIn + step.feeAmount).toInt256());
}
token0
或token1
)
amountSpecifiedRemaining
表示(扣除手续费后)剩余可用输入代币数量amountCalculated
表示已输出代币数量(注意,这里是负值)token0
或token1
)
amountSpecifiedRemaining
表示剩余需要输出的代币数量(初始为负值,因此每次交换后需要+= step.amountOut
),直到为0amountCalculated
表示(加入手续费后)已使用的输入代币数量计算协议手续费:
// if the protocol fee is on, calculate how much is owed, decrement feeAmount, and increment protocolFee
if (cache.feeProtocol > 0) {
uint256 delta = step.feeAmount / cache.feeProtocol;
step.feeAmount -= delta;
state.protocolFee += uint128(delta);
}
如果开启了协议手续费,则从交易手续费中拆出协议手续费。注意,协议手续费的值feeProtocol
表示交易手续费的 $\frac{1}{n}$。
// update global fee tracker
if (state.liquidity > 0)
state.feeGrowthGlobalX128 += FullMath.mulDiv(step.feeAmount, FixedPoint128.Q128, state.liquidity);
计算(每流动性)全局累积手续费。
// shift tick if we reached the next price
if (state.sqrtPriceX96 == step.sqrtPriceNextX96) {
// if the tick is initialized, run the tick transition
if (step.initialized) {
// check for the placeholder value, which we replace with the actual value the first time the swap
// crosses an initialized tick
if (!cache.computedLatestObservation) {
(cache.tickCumulative, cache.secondsPerLiquidityCumulativeX128) = observations.observeSingle(
cache.blockTimestamp,
0,
slot0Start.tick,
slot0Start.observationIndex,
cache.liquidityStart,
slot0Start.observationCardinality
);
cache.computedLatestObservation = true;
}
int128 liquidityNet =
ticks.cross(
step.tickNext,
(zeroForOne ? state.feeGrowthGlobalX128 : feeGrowthGlobal0X128),
(zeroForOne ? feeGrowthGlobal1X128 : state.feeGrowthGlobalX128),
cache.secondsPerLiquidityCumulativeX128,
cache.tickCumulative,
cache.blockTimestamp
);
// if we're moving leftward, we interpret liquidityNet as the opposite sign
// safe because liquidityNet cannot be type(int128).min
if (zeroForOne) liquidityNet = -liquidityNet;
state.liquidity = LiquidityMath.addDelta(state.liquidity, liquidityNet);
}
state.tick = zeroForOne ? step.tickNext - 1 : step.tickNext;
} else if (state.sqrtPriceX96 != step.sqrtPriceStartX96) {
// recompute unless we're on a lower tick boundary (i.e. already transitioned ticks), and haven't moved
state.tick = TickMath.getTickAtSqrtRatio(state.sqrtPriceX96);
}
tick
计算的价格):
tick
已经初始化,则:
ticks.cross
方法穿越该tick
,反向设置相关Outside
变量的数据tick
净流动性liquidityNet
更新可用流动性state.liquidity
tick
时,tickLower
的liquidityNet
是正的,即liquidityDelta
;tickUpper
的liquidityNet
是负的,即-liquidityDelta
;因此这里需要根据zeroForOne
的值来调整liquidityNet
的正负zeroForOne = true
时,随着交易的进行, Pool 中 $x$ 变多, $y$ 变少,价格 $\sqrt{P}$ 逐渐变小,tick
朝 lower 方向移动,如果穿越了tickLower
,意味着离开区间,因此需要减少流动性;反之,如果穿越了tickUpper
,意味着进入区间,因此需要增加流动性;即都使用 -liquidityNet
zeroForOne = false
时,随着交易的进行, Pool 中 $y$ 变多, $x$ 变少,价格 $\sqrt{P}$ 逐渐变大,tick
朝 upper 方向移动,如果穿越了tickUpper
,意味着离开区间,因此需要减少流动性;反之,如果穿越了tickLower
,意味着进入区间,因此需要增加流动性;即都使用 liquidityNet
tick
到下一个tick
tick
值重复上述step,直到交换完全结束。
完成交换后,更新全局状态:
// update tick and write an oracle entry if the tick change
if (state.tick != slot0Start.tick) {
(uint16 observationIndex, uint16 observationCardinality) =
observations.write(
slot0Start.observationIndex,
cache.blockTimestamp,
slot0Start.tick,
cache.liquidityStart,
slot0Start.observationCardinality,
slot0Start.observationCardinalityNext
);
(slot0.sqrtPriceX96, slot0.tick, slot0.observationIndex, slot0.observationCardinality) = (
state.sqrtPriceX96,
state.tick,
observationIndex,
observationCardinality
);
} else {
// otherwise just update the price
slot0.sqrtPriceX96 = state.sqrtPriceX96;
}
tick
与交换前的tick
不同:
tickCumulative
发生了改变slot0.sqrtPriceX96
, slot0.tick
等值,注意此时sqrtPriceX96
与tick
并不一定对应,sqrtPriceX96
才能准确反映当前价格tick
值相同,则只需要修改价格:
slot0.sqrtPriceX96
同样,如果全局流动性发生改变,则更新liquidity
:
// update liquidity if it changed
if (cache.liquidityStart != state.liquidity) liquidity = state.liquidity;
更新累积手续费和协议手续费:
// update fee growth global and, if necessary, protocol fees
// overflow is acceptable, protocol has to withdraw before it hits type(uint128).max fees
if (zeroForOne) {
feeGrowthGlobal0X128 = state.feeGrowthGlobalX128;
if (state.protocolFee > 0) protocolFees.token0 += state.protocolFee;
} else {
feeGrowthGlobal1X128 = state.feeGrowthGlobalX128;
if (state.protocolFee > 0) protocolFees.token1 += state.protocolFee;
}
注意,如果是从token0
交换token1
,则只能收取token0
作为手续费;反之,只能收取token1
作为手续费。
(amount0, amount1) = zeroForOne == exactInput
? (amountSpecified - state.amountSpecifiedRemaining, state.amountCalculated)
: (state.amountCalculated, amountSpecified - state.amountSpecifiedRemaining);
计算本次交换需要的具体amount0
和amount1
。
// do the transfers and collect payment
if (zeroForOne) {
if (amount1 < 0) TransferHelper.safeTransfer(token1, recipient, uint256(-amount1));
uint256 balance0Before = balance0();
IUniswapV3SwapCallback(msg.sender).uniswapV3SwapCallback(amount0, amount1, data);
require(balance0Before.add(uint256(amount0)) <= balance0(), 'IIA');
} else {
if (amount0 < 0) TransferHelper.safeTransfer(token0, recipient, uint256(-amount0));
uint256 balance1Before = balance1();
IUniswapV3SwapCallback(msg.sender).uniswapV3SwapCallback(amount0, amount1, data);
require(balance1Before.add(uint256(amount1)) <= balance1(), 'IIA');
}
emit Swap(msg.sender, recipient, amount0, amount1, state.sqrtPriceX96, state.liquidity, state.tick);
slot0.unlocked = true;
合约将输出代币转账给recipient
,同时,调用方需要在uniswapV3SwapCallback
方法将输入代币转给交易对合约:
至此,整个swap
流程就结束了。
本方法实现Uniswap v3闪电贷功能。
方法参数:
recipient
:闪电贷接收者amount0
:借出token0
的数量amount1
:借出token1
的数量data
:回调方法参数/// @inheritdoc IUniswapV3PoolActions
function flash(
address recipient,
uint256 amount0,
uint256 amount1,
bytes calldata data
) external override lock noDelegateCall {
uint128 _liquidity = liquidity;
require(_liquidity > 0, 'L');
uint256 fee0 = FullMath.mulDivRoundingUp(amount0, fee, 1e6);
uint256 fee1 = FullMath.mulDivRoundingUp(amount1, fee, 1e6);
闪电贷手续费与swap
手续费相同,都是 $\frac{fee}{10^6}$。
uint256 balance0Before = balance0();
uint256 balance1Before = balance1();
if (amount0 > 0) TransferHelper.safeTransfer(token0, recipient, amount0);
if (amount1 > 0) TransferHelper.safeTransfer(token1, recipient, amount1);
IUniswapV3FlashCallback(msg.sender).uniswapV3FlashCallback(fee0, fee1, data);
uint256 balance0After = balance0();
uint256 balance1After = balance1();
require(balance0Before.add(fee0) <= balance0After, 'F0');
require(balance1Before.add(fee1) <= balance1After, 'F1');
向收款人转入贷出的代币数量,flash
方法的调用方需实现IUniswapV3FlashCallback.uniswapV3FlashCallback
接口方法,并在该方法中归还代币,包含手续费。
// sub is safe because we know balanceAfter is gt balanceBefore by at least fee
uint256 paid0 = balance0After - balance0Before;
uint256 paid1 = balance1After - balance1Before;
if (paid0 > 0) {
uint8 feeProtocol0 = slot0.feeProtocol % 16;
uint256 fees0 = feeProtocol0 == 0 ? 0 : paid0 / feeProtocol0;
if (uint128(fees0) > 0) protocolFees.token0 += uint128(fees0);
feeGrowthGlobal0X128 += FullMath.mulDiv(paid0 - fees0, FixedPoint128.Q128, _liquidity);
}
if (paid1 > 0) {
uint8 feeProtocol1 = slot0.feeProtocol >> 4;
uint256 fees1 = feeProtocol1 == 0 ? 0 : paid1 / feeProtocol1;
if (uint128(fees1) > 0) protocolFees.token1 += uint128(fees1);
feeGrowthGlobal1X128 += FullMath.mulDiv(paid1 - fees1, FixedPoint128.Q128, _liquidity);
}
emit Flash(msg.sender, recipient, amount0, amount1, paid0, paid1);
}
根据收取的手续费,计算协议手续费(注意,token0
和token1
的协议手续费是单独设置的,参考:setFeeProtocol),最后更新protocolFees
和feeGrowthGlobal1X128
。
该方法实现取回代币功能,包括销毁流动性记录的代币和手续费代币。
参数如下:
recipient
:代币接收者tickLower
:头寸低点tickUpper
:头寸高点amount0Requested
:请求取回的token0
数量amount1Requested
:请求取回的token1
数量/// @inheritdoc IUniswapV3PoolActions
function collect(
address recipient,
int24 tickLower,
int24 tickUpper,
uint128 amount0Requested,
uint128 amount1Requested
) external override lock returns (uint128 amount0, uint128 amount1) {
// we don't need to checkTicks here, because invalid positions will never have non-zero tokensOwed{0,1}
Position.Info storage position = positions.get(msg.sender, tickLower, tickUpper);
amount0 = amount0Requested > position.tokensOwed0 ? position.tokensOwed0 : amount0Requested;
amount1 = amount1Requested > position.tokensOwed1 ? position.tokensOwed1 : amount1Requested;
if (amount0 > 0) {
position.tokensOwed0 -= amount0;
TransferHelper.safeTransfer(token0, recipient, amount0);
}
if (amount1 > 0) {
position.tokensOwed1 -= amount1;
TransferHelper.safeTransfer(token1, recipient, amount1);
}
emit Collect(msg.sender, recipient, tickLower, tickUpper, amount0, amount1);
}
上述代码比较简单,这里不再展开。需要注意,如果希望取回所有代币,则需要指定比tokensOwned
更大的数,比如可以使用type(uint128).max
。
扩容预言机观测点的可写入空间,该方法调用Oracle.sol
的grow方法实现扩容。
/// @inheritdoc IUniswapV3PoolActions
function increaseObservationCardinalityNext(uint16 observationCardinalityNext)
external
override
lock
noDelegateCall
{
uint16 observationCardinalityNextOld = slot0.observationCardinalityNext; // for the event
uint16 observationCardinalityNextNew =
observations.grow(observationCardinalityNextOld, observationCardinalityNext);
slot0.observationCardinalityNext = observationCardinalityNextNew;
if (observationCardinalityNextOld != observationCardinalityNextNew)
emit IncreaseObservationCardinalityNext(observationCardinalityNextOld, observationCardinalityNextNew);
}
批量获取指定时间的观测点数据,该方法调用Oracle.sol
的observe实现。
/// @inheritdoc IUniswapV3PoolDerivedState
function observe(uint32[] calldata secondsAgos)
external
view
override
noDelegateCall
returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s)
{
return
observations.observe(
_blockTimestamp(),
secondsAgos,
slot0.tick,
slot0.observationIndex,
liquidity,
slot0.observationCardinality
);
}
设置协议手续费的比例,该方法仅允许工厂合约的owner执行。
注意,需要分别设置token0
和token1
的协议手续费比例,该比例是交易手续费的占比,合法值为0(不开启协议手续费)或者 $4 \leq n \leq 10$,也就是可以设置协议手续费为交易手续费的 $\frac{1}{n}$。
/// @inheritdoc IUniswapV3PoolOwnerActions
function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external override lock onlyFactoryOwner {
require(
(feeProtocol0 == 0 || (feeProtocol0 >= 4 && feeProtocol0 <= 10)) &&
(feeProtocol1 == 0 || (feeProtocol1 >= 4 && feeProtocol1 <= 10))
);
uint8 feeProtocolOld = slot0.feeProtocol;
slot0.feeProtocol = feeProtocol0 + (feeProtocol1 << 4);
emit SetFeeProtocol(feeProtocolOld % 16, feeProtocolOld >> 4, feeProtocol0, feeProtocol1);
}
slot0.feeProtocol
类型为uint8
,保存两种代币的协议手续费比例,高4位为token1
,低4位为token0
:
$$ slot0.feeProtocol = \overbrace{0000}^{fee1}\overbrace{0000}^{fee0} $$
因此,feeProtocolOld % 16
表示token0
的协议手续费比例fee0
,feeProtocolOld >> 4
表示token1
的协议手续费比例fee1
。
取回协议手续费,该方法仅允许工厂合约的owner执行。
协议手续费有两个来源:
swap
产生的交易手续费flash
产生的闪电贷手续费/// @inheritdoc IUniswapV3PoolOwnerActions
function collectProtocol(
address recipient,
uint128 amount0Requested,
uint128 amount1Requested
) external override lock onlyFactoryOwner returns (uint128 amount0, uint128 amount1) {
amount0 = amount0Requested > protocolFees.token0 ? protocolFees.token0 : amount0Requested;
amount1 = amount1Requested > protocolFees.token1 ? protocolFees.token1 : amount1Requested;
if (amount0 > 0) {
if (amount0 == protocolFees.token0) amount0--; // ensure that the slot is not cleared, for gas savings
protocolFees.token0 -= amount0;
TransferHelper.safeTransfer(token0, recipient, amount0);
}
if (amount1 > 0) {
if (amount1 == protocolFees.token1) amount1--; // ensure that the slot is not cleared, for gas savings
protocolFees.token1 -= amount1;
TransferHelper.safeTransfer(token1, recipient, amount1);
}
emit CollectProtocol(msg.sender, recipient, amount0, amount1);
}
上述代码比较简单,此处不再展开。
Tick.sol管理Tick内部状态。
根据tickSpacing
计算每个tick
最大流动性,只有能够被tickSpacing
整除的tick
才能够存放流动性:
/// @notice Derives max liquidity per tick from given tick spacing
/// @dev Executed within the pool constructor
/// @param tickSpacing The amount of required tick separation, realized in multiples of `tickSpacing`
/// e.g., a tickSpacing of 3 requires ticks to be initialized every 3rd tick i.e., ..., -6, -3, 0, 3, 6, ...
/// @return The max liquidity per tick
function tickSpacingToMaxLiquidityPerTick(int24 tickSpacing) internal pure returns (uint128) {
int24 minTick = (TickMath.MIN_TICK / tickSpacing) * tickSpacing;
int24 maxTick = (TickMath.MAX_TICK / tickSpacing) * tickSpacing;
uint24 numTicks = uint24((maxTick - minTick) / tickSpacing) + 1;
return type(uint128).max / numTicks;
}
计算两个tick
区间内部的每流动性累积手续费,该方法实现白皮书公式6.17-6.19:
$$ f_a(i) = \begin{cases} f_g - f_o(i) & \text{$i_c \geq i$}\ f_o(i) & \text{$i_c < i$} \end{cases} \quad \text{(6.17)} $$
$$ f_b(i) = \begin{cases} f_o(i) & \text{$i_c \geq i$}\ f_g - f_o(i) & \text{$i_c < i$}\end{cases} \quad \text{(6.18)} $$
$$ f_r = f_g - f_b(i_l) - f_a(i_u) \quad \text{(6.19)} $$
代码如下:
/// @notice Retrieves fee growth data
/// @param self The mapping containing all tick information for initialized ticks
/// @param tickLower The lower tick boundary of the position
/// @param tickUpper The upper tick boundary of the position
/// @param tickCurrent The current tick
/// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0
/// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1
/// @return feeGrowthInside0X128 The all-time fee growth in token0, per unit of liquidity, inside the position's tick boundaries
/// @return feeGrowthInside1X128 The all-time fee growth in token1, per unit of liquidity, inside the position's tick boundaries
function getFeeGrowthInside(
mapping(int24 => Tick.Info) storage self,
int24 tickLower,
int24 tickUpper,
int24 tickCurrent,
uint256 feeGrowthGlobal0X128,
uint256 feeGrowthGlobal1X128
) internal view returns (uint256 feeGrowthInside0X128, uint256 feeGrowthInside1X128) {
Info storage lower = self[tickLower];
Info storage upper = self[tickUpper];
// calculate fee growth below
uint256 feeGrowthBelow0X128;
uint256 feeGrowthBelow1X128;
if (tickCurrent >= tickLower) {
feeGrowthBelow0X128 = lower.feeGrowthOutside0X128;
feeGrowthBelow1X128 = lower.feeGrowthOutside1X128;
} else {
feeGrowthBelow0X128 = feeGrowthGlobal0X128 - lower.feeGrowthOutside0X128;
feeGrowthBelow1X128 = feeGrowthGlobal1X128 - lower.feeGrowthOutside1X128;
}
// calculate fee growth above
uint256 feeGrowthAbove0X128;
uint256 feeGrowthAbove1X128;
if (tickCurrent < tickUpper) {
feeGrowthAbove0X128 = upper.feeGrowthOutside0X128;
feeGrowthAbove1X128 = upper.feeGrowthOutside1X128;
} else {
feeGrowthAbove0X128 = feeGrowthGlobal0X128 - upper.feeGrowthOutside0X128;
feeGrowthAbove1X128 = feeGrowthGlobal1X128 - upper.feeGrowthOutside1X128;
}
feeGrowthInside0X128 = feeGrowthGlobal0X128 - feeGrowthBelow0X128 - feeGrowthAbove0X128;
feeGrowthInside1X128 = feeGrowthGlobal1X128 - feeGrowthBelow1X128 - feeGrowthAbove1X128;
}
首先根据当前tickCurrent
,分别计算tickLower
和tickUpper
的 $f_a$ , $f_b$ ,最后计算出区间内手续费 $f_r$:
$$ \underbrace{\overbrace{..., i_l - 1}^{f_b(i_l)}, \overbrace{i_l, i_l + 1, ..., i_u - 1, i_u}^{f_r}, \overbrace{i_u + 1, ...}^{f_a(iu)}}{f_g} $$
为什么需要计算区间内每流动性累计手续费呢?因为每个头寸(Position)会在mint
/burn
时根据该值计算自己的应收手续费:
$$ liquidityDelta \cdot (feeGrowthInside - feeGrowthInsideLast) $$
更新tick
状态,并返回该tick
是否翻转flipped
:
/// @notice Updates a tick and returns true if the tick was flipped from initialized to uninitialized, or vice versa
/// @param self The mapping containing all tick information for initialized ticks
/// @param tick The tick that will be updated
/// @param tickCurrent The current tick
/// @param liquidityDelta A new amount of liquidity to be added (subtracted) when tick is crossed from left to right (right to left)
/// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0
/// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1
/// @param secondsPerLiquidityCumulativeX128 The all-time seconds per max(1, liquidity) of the pool
/// @param tickCumulative The tick * time elapsed since the pool was first initialized
/// @param time The current block timestamp cast to a uint32
/// @param upper true for updating a position's upper tick, or false for updating a position's lower tick
/// @param maxLiquidity The maximum liquidity allocation for a single tick
/// @return flipped Whether the tick was flipped from initialized to uninitialized, or vice versa
function update(
mapping(int24 => Tick.Info) storage self,
int24 tick,
int24 tickCurrent,
int128 liquidityDelta,
uint256 feeGrowthGlobal0X128,
uint256 feeGrowthGlobal1X128,
uint160 secondsPerLiquidityCumulativeX128,
int56 tickCumulative,
uint32 time,
bool upper,
uint128 maxLiquidity
) internal returns (bool flipped) {
Tick.Info storage info = self[tick];
uint128 liquidityGrossBefore = info.liquidityGross;
uint128 liquidityGrossAfter = LiquidityMath.addDelta(liquidityGrossBefore, liquidityDelta);
require(liquidityGrossAfter <= maxLiquidity, 'LO');
flipped = (liquidityGrossAfter == 0) != (liquidityGrossBefore == 0);
如果tick
从无流动性到有流动性,或者从有流动性变成无流动性,则表示tick
需要翻转flipped
。
if (liquidityGrossBefore == 0) {
// by convention, we assume that all growth before a tick was initialized happened _below_ the tick
if (tick <= tickCurrent) {
info.feeGrowthOutside0X128 = feeGrowthGlobal0X128;
info.feeGrowthOutside1X128 = feeGrowthGlobal1X128;
info.secondsPerLiquidityOutsideX128 = secondsPerLiquidityCumulativeX128;
info.tickCumulativeOutside = tickCumulative;
info.secondsOutside = time;
}
info.initialized = true;
}
如果tick
之前没有流动性,则进行初始化;对于小于当前tickCurrent
的tick
,设置Outside
等变量。
info.liquidityGross = liquidityGrossAfter;
liquidityGross
表示总流动性,用于判断tick
是否需要初始化:
mint
,则增加流动性;如果burn
,则减少流动性tick
在不同头寸中是否作为边界低点或高点无关,只与mint
或burn
操作有关tick
同时被用作tickLower
和tickUpper
,则其liquidityNet
可能是0,但liquidityGross
仍然会大于0,因此不需要再次初始化 // when the lower (upper) tick is crossed left to right (right to left), liquidity must be added (removed)
info.liquidityNet = upper
? int256(info.liquidityNet).sub(liquidityDelta).toInt128()
: int256(info.liquidityNet).add(liquidityDelta).toInt128();
}
liquidityNet
表示净流动性,当swap
穿越tick
时,用于更新全局可用流动性liquidity
:
tickLower
,即边界低点(左边界点),则增加liquidityDelta
(mint
时为正,burn
时为负)tickUpper
,即边界高点(右边界点),则减少liquidityDelta
(mint
时为正,burn
时为负)当tick
翻转后,如果没有流动性关联该tick
,即liquidityGross = 0
,则清空tick
状态:
/// @notice Clears tick data
/// @param self The mapping containing all initialized tick information for initialized ticks
/// @param tick The tick that will be cleared
function clear(mapping(int24 => Tick.Info) storage self, int24 tick) internal {
delete self[tick];
}
当tick
被穿越时,需要翻转Outside
等变量的方向,如白皮书公式6.20:
$$ f_o(i) := f_g - f_o(i) \quad \text{(6.20)} $$
这些变量在getFeeGrowthInside等方法被用到。
/// @notice Transitions to next tick as needed by price movement
/// @param self The mapping containing all tick information for initialized ticks
/// @param tick The destination tick of the transition
/// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0
/// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1
/// @param secondsPerLiquidityCumulativeX128 The current seconds per liquidity
/// @param tickCumulative The tick * time elapsed since the pool was first initialized
/// @param time The current block.timestamp
/// @return liquidityNet The amount of liquidity added (subtracted) when tick is crossed from left to right (right to left)
function cross(
mapping(int24 => Tick.Info) storage self,
int24 tick,
uint256 feeGrowthGlobal0X128,
uint256 feeGrowthGlobal1X128,
uint160 secondsPerLiquidityCumulativeX128,
int56 tickCumulative,
uint32 time
) internal returns (int128 liquidityNet) {
Tick.Info storage info = self[tick];
info.feeGrowthOutside0X128 = feeGrowthGlobal0X128 - info.feeGrowthOutside0X128;
info.feeGrowthOutside1X128 = feeGrowthGlobal1X128 - info.feeGrowthOutside1X128;
info.secondsPerLiquidityOutsideX128 = secondsPerLiquidityCumulativeX128 - info.secondsPerLiquidityOutsideX128;
info.tickCumulativeOutside = tickCumulative - info.tickCumulativeOutside;
info.secondsOutside = time - info.secondsOutside;
liquidityNet = info.liquidityNet;
}
TickMath主要包含两个方法:
该方法对应白皮书公式6.2:
$$ \sqrt{p}(i) = \sqrt{1.0001}^i = 1.0001^{\frac{i}{2}} $$
其中, $i$ 即为tick
。
因为Uniswap v3支持的价格( $\frac{token1}{token0}$ )区间为 $[2^{-128}, 2^{128}]$ ,根据白皮书公式6.1:
$$ p(i) = 1.0001^i $$
因此,对应的最大tick(MAX_TICK)为:
$$ i = \lfloor log{1.0001}{p(i)} \rfloor = \lfloor log{1.0001}{2^{128}} \rfloor = \lfloor 887272.7517970635 \rfloor = 887272 $$
最小tick(MIN_TICK)为:
$$ i = \lceil log_{1.0001}{2^{-128}} \rceil = \lceil -887272.7517970635 \rceil = -887272 $$
假设 $i$ $\geq 0$,对于一个给定的tick $i$,它总可以表示为二进制,因此以下式子总是成立:
$$ \begin{cases} i = \sum_{n=0}^{19}{(x_n \cdot 2^n)} = x_0 \cdot 1 + x_1 \cdot 2 + x2 \cdot 4 + ... + x{19}\cdot 524288 \ \forall x_n \in {0, 1} \end{cases} \quad \text{(1.1)} $$
其中, $x_n$ 为 $i$ 的二进制位。如 $i=6$ ,其对应的二进制为:000000000000000000000110
,则 $x_1 = 1, x_2 = 1$ ,其余 $x_n$ 均为0。
同样可以推出 $i < 0$ 也可以用类似的公式表示。
我们先看 $i < 0$ 的情况:
如果 $i < 0$,则:
$$ \sqrt{p}(i) = 1.0001^{\frac{i}{2}} = 1.0001^{-\frac{|i|}{2}} = \frac{1}{1.0001^{\frac{|i|}{2}}} = \frac{1}{1.0001^{\frac{1}{2}(\sum_{n=0}^{19}{(x_n \cdot 2^n)})}} \ = \frac{1}{1.0001^{\frac{1}{2} \cdot x_0}} \cdot \frac{1}{1.0001^{\frac{2}{2} \cdot x_1}} \cdot \frac{1}{1.0001^{\frac{4}{2} \cdot x2}} \cdot ... \cdot \frac{1}{1.0001^{\frac{524288}{2} \cdot x{19}}} $$
根据二进制位 $x_n$ 的值,可以总结如下:
$$ \frac{1}{1.0001^{\frac{x_n \cdot 2^n}{2}}} \begin{cases} = 1 & \text{$x_n = 0, n \geq 0, i < 0$}\ < 1 & \text{$x_n = 1, n \geq 0, i < 0$} \end{cases} $$
为了最小化精度误差,在计算过程中,使用Q128.128
(128位定点数)表示中间价格,对于每一个价格 $p$ ,均需要左移128位。由于 $i < 0, x_n = 1$ 时, $\frac{1}{1.0001^{\frac{x_n \cdot 2^n}{2}}} < 1$ ,因此在连续乘积过程中不会有溢出问题。
可以总结计算 $\sqrt{p}(i)$ 的方法:
/// @notice Calculates sqrt(1.0001^tick) * 2^96
/// @dev Throws if |tick| > max tick
/// @param tick The input tick for the above formula
/// @return sqrtPriceX96 A Fixed point Q64.96 number representing the sqrt of the ratio of the two assets (token1/token0)
/// at the given tick
function getSqrtRatioAtTick(int24 tick) internal pure returns (uint160 sqrtPriceX96) {
uint256 absTick = tick < 0 ? uint256(-int256(tick)) : uint256(int256(tick));
require(absTick <= uint256(MAX_TICK), 'T');
// 如果第0位非0,则ratio = 0xfffcb933bd6fad37aa2d162d1a594001 ,即:2^128 / 1.0001^0.5
uint256 ratio = absTick & 0x1 != 0 ? 0xfffcb933bd6fad37aa2d162d1a594001 : 0x100000000000000000000000000000000;
// 如果第1位非0,则乘以 0xfff97272373d413259a46990580e213a ,即:2^128 / 1.0001^1,因为两个乘数均为Q128.128,最终结果多乘了2^128,因此需要右移128
if (absTick & 0x2 != 0) ratio = (ratio * 0xfff97272373d413259a46990580e213a) >> 128;
// 如果第2位非0,则乘以 0xfff2e50f5f656932ef12357cf3c7fdcc ,即:2^128 / 1.0001^2,
if (absTick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128;
// 以此类推
if (absTick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128;
if (absTick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f6159c9db58835c926644) >> 128;
if (absTick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98c081472e6896dfb254c0) >> 128;
if (absTick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c96a3843ec78b326b52861) >> 128;
if (absTick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99a2a811c461f1969c3053) >> 128;
if (absTick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128;
if (absTick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac413176f2b074cf7815e54) >> 128;
if (absTick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b70005940c7a398e4b70f3) >> 128;
if (absTick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128;
if (absTick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128;
if (absTick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128;
if (absTick & 0x4000 != 0) ratio = (ratio * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128;
if (absTick & 0x8000 != 0) ratio = (ratio * 0x31be135f97d08fd981231505542fcfa6) >> 128;
if (absTick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128;
if (absTick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedb81196699c329225ee604) >> 128;
if (absTick & 0x40000 != 0) ratio = (ratio * 0x2216e584f5fa1ea926041bedfe98) >> 128;
// 如果第19位非0,因为(2^19 = 0x80000=524288),则乘以 0x2216e584f5fa1ea926041bedfe98,即:2^128 / 1.0001^(524288/2)
// tick的最大值为887272,因此其二进制最多只需要20位表示,从0开始计数,最后一位为第19位。
if (absTick & 0x80000 != 0) ratio = (ratio * 0x48a170391f7dc42444e8fa2) >> 128;
if (tick > 0) ratio = type(uint256).max / ratio;
// this divides by 1<<32 rounding up to go from a Q128.128 to a Q128.96.
// we then downcast because we know the result always fits within 160 bits due to our tick input constraint
// we round up in the division so getTickAtSqrtRatio of the output price is always consistent
sqrtPriceX96 = uint160((ratio >> 32) + (ratio % (1 << 32) == 0 ? 0 : 1));
}
假设 $i > 0$ 时:
$$ \sqrt{p{Q128128}(i)} = 2^{128} \cdot \sqrt{p(i)} = 2^{128} \cdot 1.0001^{\frac{i}{2}} \ = \frac{2^{128}}{1.0001^{-\frac{i}{2}}} = \frac{2^{256}}{2^{128} \cdot \sqrt{p(-i)}} = \frac{2^{256}}{\sqrt{p{Q128128}(-i)}} $$
因此,只需要算出 $i < 0$ 时的 ratio 值,使用 $2^{256}$ 除以ratio即可得出 $i > 0$ 时,使用Q128.128
表示的ratio值:
if (tick > 0) ratio = type(uint256).max / ratio;
代码最后一行将ratio右移32位,转化为Q128.96
格式的定点数:
sqrtPriceX96 = uint160((ratio >> 32) + (ratio % (1 << 32) == 0 ? 0 : 1));
这里算的是开根号价格 $\sqrt{p}$ ,由于价格 $p$ 最大为 $2^{128}$ ,因此 $\sqrt{p}$ 最大为 $2^{64}$ ,也就是整数部分最大只需要64位表示,因此最终的sqrtPriceX96一定可以用160位(64+96,即Q64.96
格式的定点数)表示。
该方法对应白皮书中的公式6.8:
$$ ic = \lfloor \log{\sqrt{1.0001}} \sqrt{P} \rfloor $$
本方法涉及在Solidity中计算对数,根据对数公式,可以推出:
$$ \log_{\sqrt{1.0001}} \sqrt{P} = \frac{log_2{\sqrt{P}}}{log_2{\sqrt{1.0001}}} = log2{\sqrt{P}} \cdot log{\sqrt{1.0001}}{2} $$
由于 $log_{\sqrt{1.0001}}{2}$ 是一个常数,因此我们只需要计算 $log_2{\sqrt{P}}$ 即可。
将输入的参数为 $\sqrt{P}$ 看作 $x$ ,问题转化为求 $log_2{x}$。
把结果分为整数部分 $n$ 和小数部分 $m$ ,则:
$$ n \leq log_2{x} = n + m < n + 1 $$
对于 $n$ ,因为:
$$ 2^n \leq x < 2^{n+1} $$
可以通过二分查找找到 $n$ 值:
使用Python代码描述如下:
def find_msb(x):
msb = 0
for k in reversed(range(8)): // k = 7, 6, 5. 4, 3, 2, 1, 0
if x > 2 ** (2 ** k) - 1:
msb += 2 ** k // 标记该位为1,即加上 2 ** k
x /= 2 ** (2 ** k) // 右移 2 ** k 位
return msb
Uniswap v3中的Solidity代码如下(请参考代码中注释):
/// @notice Calculates the greatest tick value such that getRatioAtTick(tick) <= ratio
/// @dev Throws in case sqrtPriceX96 < MIN_SQRT_RATIO, as MIN_SQRT_RATIO is the lowest value getRatioAtTick may
/// ever return.
/// @param sqrtPriceX96 The sqrt ratio for which to compute the tick as a Q64.96
/// @return tick The greatest tick for which the ratio is less than or equal to the input ratio
function getTickAtSqrtRatio(uint160 sqrtPriceX96) internal pure returns (int24 tick) {
// second inequality must be < because the price can never reach the price at the max tick
require(sqrtPriceX96 >= MIN_SQRT_RATIO && sqrtPriceX96 < MAX_SQRT_RATIO, 'R');
uint256 ratio = uint256(sqrtPriceX96) << 32; // 左移32位,转化为Q128.128格式
uint256 r = ratio;
uint256 msb = 0;
assembly {
// 如果大于2 ** (2 ** 7) - 1,则保存临时变量:2 ** 7
let f := shl(7, gt(r, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
// msb += 2 ** 7
msb := or(msb, f)
// r /= (2 ** (2 ** 7)),即右移 2 ** 7
r := shr(f, r)
}
assembly {
let f := shl(6, gt(r, 0xFFFFFFFFFFFFFFFF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(5, gt(r, 0xFFFFFFFF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(4, gt(r, 0xFFFF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(3, gt(r, 0xFF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(2, gt(r, 0xF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(1, gt(r, 0x3))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := gt(r, 0x1)
msb := or(msb, f)
}
对于小数部分 $m$:
$$ 0 \leq m = log_2{x} - n = log_2{\frac{x}{2^n}} < 1 \quad \text{(1.2)} $$
其中, $n$ 为上文算出的msb,即整数部分。
我们先将 $\frac{x}{2^n}$ 看做一个整体 $r$,则:
$$ 0 \leq log_2{r} < 1 $$
$$ 1 \leq r = \frac{x}{2^n} < 2 $$
这里我们希望求出 $log_2{r}$ ,如果能够将 $log_2{r}$ 表示成一个不断收敛的数列,当小数位足够多时,就可以近似求出 $log_2{r}$ 的值。
根据对数公式,我们可以推导以下两个等式:
$$ log_2{r} = \frac{2 \cdot log_2{r}}{2} = \frac{log_2{r^2}}{2} \quad \text{(1.3)} $$
$$ log_2{r} = log_2{2 \cdot \frac{r}{2}} = 1 + log_2{\frac{r}{2}} \quad \text{(1.4)} $$
我们循环套用上述两个公式,可以整理以下方法:
可以将上述步骤总结为以下公式:
$$ log_2{r} = m_1 \cdot \frac{1}{2} + m_2 \cdot \frac{1}{4} + ... + mn \cdot \frac{1}{2^n} = \sum^{\infty}{i=1}(m_i \cdot \frac{1}{2^i}) \quad \text{(1.5)} $$
其中, $\forall m_i \in {0, 1}$。
这其实就是小数的二进制表示法,小数的二进制第一位表示为 $2^{-1}$ ,第二位为 $2^{-2}$ ,以此类推。而在我们上述计算 $log_2{r}$ 的步骤中,如果进入步骤2,则相当于标记该位为1;如果进入步骤3,则相当于标记该位为0。
重复以上步骤的过程,即为确认小数部分二进制位从高位到低位(从左到右)每一位的值,每一个循环确认一位。循环次数越多,计算得出的 $log_2{r}$ 精度越高。
我们继续看 Uniswap v3 中计算小数部分的代码:
if (msb >= 128) r = ratio >> (msb - 127);
else r = ratio << (127 - msb);
这里msb即为整数部分 $n$ 。因为ratio是Q128.128
,如果msb >= 128
则表示ratio >= 1
,因此需要右移整数位数得到小数部分ratio >> msb
;-127
表示左移127位,使用Q129.127
表示小数部分;同样,如果msb < 128
,则表示ratio < 1
,其本身就只有小数部分,因此通过左移127 - msb
位,将小数部分凑齐127位,也用Q129.127
表示小数部分。
实际上,ratio >> msb
即为公式1.2中的 $\frac{x}{2^n}$ ,也就是步骤1中的 $r$ ,在后续迭代算法(步骤1-3)中需要用到。
int256 log_2 = (int256(msb) - 128) << 64;
因为msb是基于Q128.128
的ratio计算的,int256(msb) - 128
表示 $n$ 的真正值。<< 64
使用Q192.64
表示 $n$ 。
这一行代码实际上是使用Q192.64
保存整数部分的值。
下面代码循环计算二进制表示的小数部分的前14位小数:
assembly {
// 根据步骤1,计算r^2,右移127位是因为两个r都是Q129.127
r := shr(127, mul(r, r))
// 因为1 <= r^2 < 4,仅需2位表示r^2的整数,
// 因此从右往左数第129和128位表示r^2的整数部分,
// 右移128位,仅剩129位,
// 该值为1,则表示r >= 2;该值为0,则表示r < 2
let f := shr(128, r)
// 如果f == 1,则log_2 += Q192.64的1/2
log_2 := or(log_2, shl(63, f))
// 根据步骤2(即公式1.4),如果r >= 2(即f == 1),则r /= 2;否则不操作,即步骤3
r := shr(f, r)
}
// 重复进行上述过程
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(62, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(61, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(60, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(59, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(58, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(57, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(56, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(55, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(54, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(53, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(52, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(51, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(50, f))
}
上述计算的log_2即为Q192.64
表示的 $log_2{\sqrt{P}}$ ,精度为 $2^{-14}$ 。
int256 log_sqrt10001 = log_2 * 255738958999603826347141; // 128.128 number
因为:
$$ \log_{\sqrt{1.0001}} \sqrt{P} = \frac{log_2{\sqrt{P}}}{log_2{\sqrt{1.0001}}} = log2{\sqrt{P}} \cdot log{\sqrt{1.0001}}{2} $$
这里255738958999603826347141
即为 $log_{\sqrt{1.0001}}{2} \cdot 2^{64}$ ,两个Q192.64
乘以的结果为Q128.64
(不会发生溢出)。
由于这里算出的 $log_2{\sqrt{P}}$ 精度为 $2^{-14}$ ,乘以255738958999603826347141
后误差进一步放大,因此需要修正并确保结果是最接近给定价格的tick。
int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247210) >> 128);
int24 tickHi = int24((log_sqrt10001 + 291339464771989622907027621153398088495) >> 128);
tick = tickLow == tickHi ? tickLow : getSqrtRatioAtTick(tickHi) <= sqrtPriceX96 ? tickHi : tickLow;
其中,3402992956809132418596140100660247210
表示0.01000049749154292 << 128
,291339464771989622907027621153398088495
表示0.8561697375276566 << 128
。
参考abdk的这篇文章,当精度为 $2^{-14}$ 时,tick的最小误差为 $− 0.85617$ ,最大误差为 $0.0100005$ 。同时,这篇文章也从理论上证明了,只有当精度等于(或高于) $2^{-14}$ 时,只需要一次计算即可得出所需的tick值。
我们的目的是寻找满足当前条件的最大tick,使得tick对应的 $\sqrt{P}$ 小于等于传入的值。因此如果补偿后的tickHi满足要求,则优先使用tickHi;否则使用tickLow。
以下是本节参考文章,有兴趣的朋友请扩展阅读:
TickBitmap使用Bitmap(位图)保存Tick的初始化状态,提供以下几个方法:
/// @notice Computes the position in the mapping where the initialized bit for a tick lives
/// @param tick The tick for which to compute the position
/// @return wordPos The key in the mapping containing the word in which the bit is stored
/// @return bitPos The bit position in the word where the flag is stored
function position(int24 tick) private pure returns (int16 wordPos, uint8 bitPos) {
wordPos = int16(tick >> 8);
bitPos = uint8(tick % 256);
}
只有能被tickSpacing
整除的tick
才能记录在位图中,因此此处的参数: $tick = \frac{tick}{tickSpacing}$。
tick
类型为int24
,其二进制从右到左,从低位到高位,前8位表示bitPos
,后16位表示wordPos
,如下图所示:
$$ \overbrace{23,...,8}^{wordPos},\overbrace{7,...,0}^{bitPos} $$
tick
的bitmap表示为:self[wordPos] ^= 1 << bitPos
。
当tick
翻转初始化状态时,如果其位图的值为0,则需要修改为1;否则,修改为0;即对该位“取反”。
/// @notice Flips the initialized state for a given tick from false to true, or vice versa
/// @param self The mapping in which to flip the tick
/// @param tick The tick to flip
/// @param tickSpacing The spacing between usable ticks
function flipTick(
mapping(int16 => uint256) storage self,
int24 tick,
int24 tickSpacing
) internal {
require(tick % tickSpacing == 0); // ensure that the tick is spaced
(int16 wordPos, uint8 bitPos) = position(tick / tickSpacing);
uint256 mask = 1 << bitPos;
self[wordPos] ^= mask;
}
首先获取tick
对应的wordPos
和bitPos
,由于最后针对bitPos
执行按位“异或”操作:
因为1与任何值b(0或1)异或等于~b;0与任何值b(0或1)异或等于b。
tick
对应的位(bit),mask为1
1^1=0
,因此tick
状态由“初始化”变成“未初始化”;0^1=1
,因此tick
状态由“未初始化”变成“初始化”tick
对应的位,mask为0
1^0=1
,因此状态不变0^0=0
,因此状态不变所以,上述代码实现了tick
位取反的效果。
根据参数tick
,寻找位图上最近一个已初始化的tick
,如未找到,返回本组最后一个未初始化的tick。
/// @notice Returns the next initialized tick contained in the same word (or adjacent word) as the tick that is either
/// to the left (less than or equal to) or right (greater than) of the given tick
/// @param self The mapping in which to compute the next initialized tick
/// @param tick The starting tick
/// @param tickSpacing The spacing between usable ticks
/// @param lte Whether to search for the next initialized tick to the left (less than or equal to the starting tick)
/// @return next The next initialized or uninitialized tick up to 256 ticks away from the current tick
/// @return initialized Whether the next tick is initialized, as the function only searches within up to 256 ticks
function nextInitializedTickWithinOneWord(
mapping(int16 => uint256) storage self,
int24 tick,
int24 tickSpacing,
bool lte
) internal view returns (int24 next, bool initialized) {
int24 compressed = tick / tickSpacing;
if (tick < 0 && tick % tickSpacing != 0) compressed--; // round towards negative infinity
if (lte) {
(int16 wordPos, uint8 bitPos) = position(compressed);
// all the 1s at or to the right of the current bitPos
uint256 mask = (1 << bitPos) - 1 + (1 << bitPos);
uint256 masked = self[wordPos] & mask;
// if there are no initialized ticks to the right of or at the current tick, return rightmost in the word
initialized = masked != 0;
// overflow/underflow is possible, but prevented externally by limiting both tickSpacing and tick
next = initialized
? (compressed - int24(bitPos - BitMath.mostSignificantBit(masked))) * tickSpacing
: (compressed - int24(bitPos)) * tickSpacing;
} else {
// start from the word of the next tick, since the current tick state doesn't matter
(int16 wordPos, uint8 bitPos) = position(compressed + 1);
// all the 1s at or to the left of the bitPos
uint256 mask = ~((1 << bitPos) - 1);
uint256 masked = self[wordPos] & mask;
// if there are no initialized ticks to the left of the current tick, return leftmost in the word
initialized = masked != 0;
// overflow/underflow is possible, but prevented externally by limiting both tickSpacing and tick
next = initialized
? (compressed + 1 + int24(BitMath.leastSignificantBit(masked) - bitPos)) * tickSpacing
: (compressed + 1 + int24(type(uint8).max - bitPos)) * tickSpacing;
}
}
如果lte == true
,即寻找小于等于当前tick
的值,因此问题转化为:寻找低比特位上是否有1
。
if (lte) {
(int16 wordPos, uint8 bitPos) = position(compressed);
// all the 1s at or to the right of the current bitPos
uint256 mask = (1 << bitPos) - 1 + (1 << bitPos);
uint256 masked = self[wordPos] & mask;
}
其中,mask的值为所有小于等于bitPos
的位全部置1,比如bitPos = 7
,则mask二进制 = 1111111
;masked保留位图中小于等于bitPos
的位值,比如self[wordPos] = 110101011
,则masked = 110101011 & 1111111 = 000101011
。
如果masked != 0
,则表示当前方向(lte
)该wordPos
上有初始化的tick
;否则,则表示该方向都是未初始化的tick。
// if there are no initialized ticks to the right of or at the current tick, return rightmost in the word
initialized = masked != 0;
如果存在已初始化的tick
,则需要定位到masked
中最高位的1;如果不存在,则返回当前方向最后一个tick
。
// overflow/underflow is possible, but prevented externally by limiting both tickSpacing and tick
next = initialized
? (compressed - int24(bitPos - BitMath.mostSignificantBit(masked))) * tickSpacing
: (compressed - int24(bitPos)) * tickSpacing;
BitMath.mostSignificantBit(masked)
通过二分查找法找到masked
最高位的1,关于该算法的具体说明,可参考本文TickMath对数计算部分。简单而言,mostSignificantBit(masked)
会返回一个数n
,使得:
$$ 2^n \leq masked < 2^{n+1} $$
比如,如果masked = 000101011
,mostSignificantBit
将返回5,因为最高位的1在(从0开始)第5位:0001
01011。
compressed - int24(bitPos)
表示当前wordPos
第一个tick
,compressed - int24(bitPos - BitMath.mostSignificantBit(masked))
表示该最高位bitPos
对应的tick
;* tickSpacing
将恢复到原始tick
值,因为保存位图时,tick
需要先除以tickSpacing
。
同样,如果向大于当前tick
方向寻找第一个已初始化的tick
时,方法和上述类似,只是mostSignificantBit
需要换成leastSignificantBit
,即从tick
比特位开始(不含),往高位寻找第一个bitPos
位为1的tick
。
else {
// start from the word of the next tick, since the current tick state doesn't matter
(int16 wordPos, uint8 bitPos) = position(compressed + 1);
// all the 1s at or to the left of the bitPos
uint256 mask = ~((1 << bitPos) - 1);
uint256 masked = self[wordPos] & mask;
// if there are no initialized ticks to the left of the current tick, return leftmost in the word
initialized = masked != 0;
// overflow/underflow is possible, but prevented externally by limiting both tickSpacing and tick
next = initialized
? (compressed + 1 + int24(BitMath.leastSignificantBit(masked) - bitPos)) * tickSpacing
: (compressed + 1 + int24(type(uint8).max - bitPos)) * tickSpacing;
}
Position.sol
管理头寸相关信息,包括以下方法:
一个头寸(Position)可由“所有者”owner
、“区间低点”tickLower
和“区间高点”tickUpper
唯一确定,对于同一个交易对池子,每个用户可以创建多个不同价格区间的头寸,但只能创建一个相同价格区间的头寸;不同用户可以创建相同价格区间的头寸。
根据owner
、tickLower
和tickUpper
返回一个头寸对象:
/// @notice Returns the Info struct of a position, given an owner and position boundaries
/// @param self The mapping containing all user positions
/// @param owner The address of the position owner
/// @param tickLower The lower tick boundary of the position
/// @param tickUpper The upper tick boundary of the position
/// @return position The position info struct of the given owners' position
function get(
mapping(bytes32 => Info) storage self,
address owner,
int24 tickLower,
int24 tickUpper
) internal view returns (Position.Info storage position) {
position = self[keccak256(abi.encodePacked(owner, tickLower, tickUpper))];
}
更新头寸的流动性和可取回代币,注意,该方法只会在mint
和burn
时被触发,swap
并不会更新头寸信息。
/// @notice Credits accumulated fees to a user's position
/// @param self The individual position to update
/// @param liquidityDelta The change in pool liquidity as a result of the position update
/// @param feeGrowthInside0X128 The all-time fee growth in token0, per unit of liquidity, inside the position's tick boundaries
/// @param feeGrowthInside1X128 The all-time fee growth in token1, per unit of liquidity, inside the position's tick boundaries
function update(
Info storage self,
int128 liquidityDelta,
uint256 feeGrowthInside0X128,
uint256 feeGrowthInside1X128
) internal {
Info memory _self = self;
uint128 liquidityNext;
if (liquidityDelta == 0) {
require(_self.liquidity > 0, 'NP'); // disallow pokes for 0 liquidity positions
liquidityNext = _self.liquidity;
} else {
liquidityNext = LiquidityMath.addDelta(_self.liquidity, liquidityDelta);
}
更新流动性:
mint
,则liquidityDelta > 0
burn
,则liquidityDelta < 0
// calculate accumulated fees
uint128 tokensOwed0 =
uint128(
FullMath.mulDiv(
feeGrowthInside0X128 - _self.feeGrowthInside0LastX128,
_self.liquidity,
FixedPoint128.Q128
)
);
uint128 tokensOwed1 =
uint128(
FullMath.mulDiv(
feeGrowthInside1X128 - _self.feeGrowthInside1LastX128,
_self.liquidity,
FixedPoint128.Q128
)
);
根据头寸区间自上一次更新后的每流动性手续费增长值,分别计算token0
和token1
的应收手续费。
// update the position
if (liquidityDelta != 0) self.liquidity = liquidityNext;
self.feeGrowthInside0LastX128 = feeGrowthInside0X128;
self.feeGrowthInside1LastX128 = feeGrowthInside1X128;
if (tokensOwed0 > 0 || tokensOwed1 > 0) {
// overflow is acceptable, have to withdraw before you hit type(uint128).max fees
self.tokensOwed0 += tokensOwed0;
self.tokensOwed1 += tokensOwed1;
}
}
更新头寸流动性、本次每流动性手续费和可取回代币数。
SwapMath只有一个方法,即computeSwapStep
,计算单步交换的输入输出。
该方法实际上实现的是白皮书6.2.3小节:在一个Tick内交易。在该场景下,流动性 $L$ 不变,仅价格 $\sqrt{P}$ 发生变化。
参数如下:
sqrtRatioCurrentX96
:当前价格sqrtRatioTargetX96
:目标价格liquidity
:可用流动性amountRemaining
:剩余输入代币feePips
:手续费返回值:
sqrtRatioNextX96
:交换后价格amountIn
:本次交换消耗的输入代币amountOut
:本次交换消耗的输出代币feeAmount
:交易手续费(含协议手续费)function computeSwapStep(
uint160 sqrtRatioCurrentX96,
uint160 sqrtRatioTargetX96,
uint128 liquidity,
int256 amountRemaining,
uint24 feePips
)
internal
pure
returns (
uint160 sqrtRatioNextX96,
uint256 amountIn,
uint256 amountOut,
uint256 feeAmount
)
{
bool zeroForOne = sqrtRatioCurrentX96 >= sqrtRatioTargetX96;
bool exactIn = amountRemaining >= 0;
我们在swap章节提到,对于一个交换操作,根据zeroForOne
和exactIn
的值,有四种组合:
zeroForOne | exactInput | swap |
---|---|---|
true | true | 输入固定数量token0 ,输出最大数量token1 |
true | false | 输入最小数量token0 ,输出固定数量token1 |
false | true | 输入固定数量token1 ,输出最大数量token0 |
false | false | 输入最小数量token1 ,输出固定数量token0 |
if (exactIn) {
uint256 amountRemainingLessFee = FullMath.mulDiv(uint256(amountRemaining), 1e6 - feePips, 1e6);
amountIn = zeroForOne
? SqrtPriceMath.getAmount0Delta(sqrtRatioTargetX96, sqrtRatioCurrentX96, liquidity, true)
: SqrtPriceMath.getAmount1Delta(sqrtRatioCurrentX96, sqrtRatioTargetX96, liquidity, true);
if (amountRemainingLessFee >= amountIn) sqrtRatioNextX96 = sqrtRatioTargetX96;
else
sqrtRatioNextX96 = SqrtPriceMath.getNextSqrtPriceFromInput(
sqrtRatioCurrentX96,
liquidity,
amountRemainingLessFee,
zeroForOne
);
}
如果是输入固定数量,则交易手续费需要从输入代币中扣除。
因为feePips
的单位是百分之一基点,即 $\frac{1}{10^6}$ ,因此,按照如下公式扣除手续费:
$$ amountRemaining \cdot (1 - \frac{feePips}{10^6}) $$
使用getAmount0Delta或getAmount1Delta,根据当前价格、目标价格和可用流动性计算所需的输入代币数量amountIn
:
token0
交换token1
,则输入代币为token0
,因此计算amount0
token1
交换token0
,则输入代币为token1
,因此计算amount1
注意,方法的最后一个参数roundUp
,当计算amountIn
时需要设置roundUp = true
,也就是合约只能多收钱,而不能少收,否则合约资金将出现损失;同样,当计算amountOut
时设置roundUp = false
,也就是合约可以少付钱,而不能多付。
amountIn
,则表示该步交易可以完成,因此交换后的价格等于目标价格amountRemainingLessFee
,计算交换后价格,我们在SqrtPriceMath.getNextSqrtPriceFromInput会具体介绍计算方法else {
amountOut = zeroForOne
? SqrtPriceMath.getAmount1Delta(sqrtRatioTargetX96, sqrtRatioCurrentX96, liquidity, false)
: SqrtPriceMath.getAmount0Delta(sqrtRatioCurrentX96, sqrtRatioTargetX96, liquidity, false);
if (uint256(-amountRemaining) >= amountOut) sqrtRatioNextX96 = sqrtRatioTargetX96;
else
sqrtRatioNextX96 = SqrtPriceMath.getNextSqrtPriceFromOutput(
sqrtRatioCurrentX96,
liquidity,
uint256(-amountRemaining),
zeroForOne
);
}
如果不是输入固定数量,也就是输出固定数量,需要将amountRemaining
作为输出代币数量使用:
token0
交换token1
,则输出代币为token1
,因此计算amount1
token1
交换token0
,则输出代币为token0
,因此计算amount0
首先根据当前价格、目标价格和可用流动性,计算可产生的输出代币数量amountOut
,注意,这里与上面相反,如果是token0
交换token1
,需要计算token1
的数量,需使用SqrtPriceMath.getAmount1Delta
方法。
当表示固定输出代币时,传入的参数amountRemaining
是负值:
amountOut
的绝对值小于应输出代币数量,则表示可完全交换,交换后价格等于目标价格amountRemaining
,计算交换后价格 bool max = sqrtRatioTargetX96 == sqrtRatioNextX96;
如果交换后价格等于目标价格,则表示完全交换。
// get the input/output amounts
if (zeroForOne) {
amountIn = max && exactIn
? amountIn
: SqrtPriceMath.getAmount0Delta(sqrtRatioNextX96, sqrtRatioCurrentX96, liquidity, true);
amountOut = max && !exactIn
? amountOut
: SqrtPriceMath.getAmount1Delta(sqrtRatioNextX96, sqrtRatioCurrentX96, liquidity, false);
} else {
amountIn = max && exactIn
? amountIn
: SqrtPriceMath.getAmount1Delta(sqrtRatioCurrentX96, sqrtRatioNextX96, liquidity, true);
amountOut = max && !exactIn
? amountOut
: SqrtPriceMath.getAmount0Delta(sqrtRatioCurrentX96, sqrtRatioNextX96, liquidity, false);
}
计算本次交换所需输入amountIn
和所得输出amountOut
:
token0
交换token1
amountIn
amountIn
getAmount0Delta
,根据价格区间和流动性计算所需输入amountOut
amountOut
getAmount1Delta
,根据价格区间和流动性计算所得输出token1
交换token1
amountIn
amountIn
getAmount1Delta
,根据价格区间和流动性计算所需输入amountOut
amountOut
getAmount0Delta
,根据价格区间和流动性计算所得输出// cap the output amount to not exceed the remaining output amount
if (!exactIn && amountOut > uint256(-amountRemaining)) {
amountOut = uint256(-amountRemaining);
}
确认所得输出没有超过指定输出。
if (exactIn && sqrtRatioNextX96 != sqrtRatioTargetX96) {
// we didn't reach the target, so take the remainder of the maximum input as fee
feeAmount = uint256(amountRemaining) - amountIn;
} else {
feeAmount = FullMath.mulDivRoundingUp(amountIn, feePips, 1e6 - feePips);
}
计算交易手续费(包括协议手续费):
amountRemaining
扣除本次交换所需输入amountIn
,即为手续费;amountIn
计算手续费;注意,除了上述最后一次交换外,这里的amountIn
和amountOut
都是不包括手续费的,因此计算手续费需要除以1e6 - feePips
,而非1e6
。根据当前价格、liquidity
和 $\Delta{x}$ ,计算目标价格。
根据白皮书公式6.16:
$$ \Delta{x} = \Delta{\frac{1}{\sqrt{P}}} \cdot L $$
假设 $\sqrt{P_a} > \sqrt{P_b}$ ,则 $x_a < x_b$ :
$$ \Delta{x} = x_b - x_a $$
如果已知 $\sqrt{P_a}$ 计算 $\sqrt{P_b}$ ,则:
$$ \frac{1}{\sqrt{P_b}} = \frac{\Delta{x}}{L} + \frac{1}{\sqrt{P_a}} = \frac{1}{L} \cdot (\Delta{x} + \frac{L}{\sqrt{P_a}}) \quad \text{(1.1)} $$
$$ \sqrt{P_b} = \frac{L}{\Delta{x} + \frac{L}{\sqrt{P_a}}} \quad \text{(1.2)} $$
$$ {\sqrt{P_b}} = \frac{L \cdot \sqrt{P_a}}{L + \Delta{x} \cdot \sqrt{P_a}} \quad \text{(1.3)} $$
如果已知 $\sqrt{P_b}$ 计算 $\sqrt{P_a}$ ,则:
$$ \frac{1}{\sqrt{P_a}} = \frac{1}{\sqrt{P_b}} - \frac{\Delta{x}}{L} \quad \text{(1.4)} $$
$$ {\sqrt{P_a}} = \frac{L \cdot \sqrt{P_b}}{L - \Delta{x} \cdot \sqrt{P_b}} \quad \text{(1.5)} $$
/// @notice Gets the next sqrt price given a delta of token0
/// @dev Always rounds up, because in the exact output case (increasing price) we need to move the price at least
/// far enough to get the desired output amount, and in the exact input case (decreasing price) we need to move the
/// price less in order to not send too much output.
/// The most precise formula for this is liquidity * sqrtPX96 / (liquidity +- amount * sqrtPX96),
/// if this is impossible because of overflow, we calculate liquidity / (liquidity / sqrtPX96 +- amount).
/// @param sqrtPX96 The starting price, i.e. before accounting for the token0 delta
/// @param liquidity The amount of usable liquidity
/// @param amount How much of token0 to add or remove from virtual reserves
/// @param add Whether to add or remove the amount of token0
/// @return The price after adding or removing amount, depending on add
function getNextSqrtPriceFromAmount0RoundingUp(
uint160 sqrtPX96,
uint128 liquidity,
uint256 amount,
bool add
) internal pure returns (uint160) {
// we short circuit amount == 0 because the result is otherwise not guaranteed to equal the input price
if (amount == 0) return sqrtPX96;
uint256 numerator1 = uint256(liquidity) << FixedPoint96.RESOLUTION;
if (add) {
uint256 product;
if ((product = amount * sqrtPX96) / amount == sqrtPX96) {
uint256 denominator = numerator1 + product;
if (denominator >= numerator1)
// always fits in 160 bits
return uint160(FullMath.mulDivRoundingUp(numerator1, sqrtPX96, denominator));
}
return uint160(UnsafeMath.divRoundingUp(numerator1, (numerator1 / sqrtPX96).add(amount)));
} else {
uint256 product;
// if the product overflows, we know the denominator underflows
// in addition, we must check that the denominator does not underflow
require((product = amount * sqrtPX96) / amount == sqrtPX96 && numerator1 > product);
uint256 denominator = numerator1 - product;
return FullMath.mulDivRoundingUp(numerator1, sqrtPX96, denominator).toUint160();
}
}
add = true
时,即已知 $\sqrt{P_a}$ 计算 $\sqrt{P_b}$
add = false
时,即已知 $\sqrt{P_b}$ ,根据上述公式1.5计算 $\sqrt{P_a}$根据当前价格、liquidity
和 $\Delta{y}$ ,计算目标价格。
根据白皮书公式6.13:
$$ \Delta{\sqrt{P}} = \frac{\Delta{y}}{L} \quad \text{(6.13)} $$
假设 $\sqrt{P_a} > \sqrt{P_b}$ ,则 $y_a > y_b$:
$$ \Delta{y} = y_a - y_b $$
如果已知 $\sqrt{P_b}$ 计算 $\sqrt{P_a}$ ,则:
$$ \sqrt{P_a} = \sqrt{P_b} + \frac{\Delta{y}}{L} \quad \text{(1.6)} $$
如果已知 $\sqrt{P_a}$ 计算 $\sqrt{P_b}$ ,则:
$$ \sqrt{P_b} = \sqrt{P_a} - \frac{\Delta{y}}{L} \quad \text{(1.7)} $$
/// @notice Gets the next sqrt price given a delta of token1
/// @dev Always rounds down, because in the exact output case (decreasing price) we need to move the price at least
/// far enough to get the desired output amount, and in the exact input case (increasing price) we need to move the
/// price less in order to not send too much output.
/// The formula we compute is within <1 wei of the lossless version: sqrtPX96 +- amount / liquidity
/// @param sqrtPX96 The starting price, i.e., before accounting for the token1 delta
/// @param liquidity The amount of usable liquidity
/// @param amount How much of token1 to add, or remove, from virtual reserves
/// @param add Whether to add, or remove, the amount of token1
/// @return The price after adding or removing `amount`
function getNextSqrtPriceFromAmount1RoundingDown(
uint160 sqrtPX96,
uint128 liquidity,
uint256 amount,
bool add
) internal pure returns (uint160) {
// if we're adding (subtracting), rounding down requires rounding the quotient down (up)
// in both cases, avoid a mulDiv for most inputs
if (add) {
uint256 quotient =
(
amount <= type(uint160).max
? (amount << FixedPoint96.RESOLUTION) / liquidity
: FullMath.mulDiv(amount, FixedPoint96.Q96, liquidity)
);
return uint256(sqrtPX96).add(quotient).toUint160();
} else {
uint256 quotient =
(
amount <= type(uint160).max
? UnsafeMath.divRoundingUp(amount << FixedPoint96.RESOLUTION, liquidity)
: FullMath.mulDivRoundingUp(amount, FixedPoint96.Q96, liquidity)
);
require(sqrtPX96 > quotient);
// always fits 160 bits
return uint160(sqrtPX96 - quotient);
}
}
add = true
时,即按照公式1.6,根据 $\sqrt{P_b}$ 计算 $\sqrt{P_a}$add = false
时,按照公式1.7,根据 $\sqrt{P_a}$ 计算 $\sqrt{P_b}$根据输入代币计算下一个价格,即添加amountIn
数量的代币后的价格:
/// @notice Gets the next sqrt price given an input amount of token0 or token1
/// @dev Throws if price or liquidity are 0, or if the next price is out of bounds
/// @param sqrtPX96 The starting price, i.e., before accounting for the input amount
/// @param liquidity The amount of usable liquidity
/// @param amountIn How much of token0, or token1, is being swapped in
/// @param zeroForOne Whether the amount in is token0 or token1
/// @return sqrtQX96 The price after adding the input amount to token0 or token1
function getNextSqrtPriceFromInput(
uint160 sqrtPX96,
uint128 liquidity,
uint256 amountIn,
bool zeroForOne
) internal pure returns (uint160 sqrtQX96) {
require(sqrtPX96 > 0);
require(liquidity > 0);
// round to make sure that we don't pass the target price
return
zeroForOne
? getNextSqrtPriceFromAmount0RoundingUp(sqrtPX96, liquidity, amountIn, true)
: getNextSqrtPriceFromAmount1RoundingDown(sqrtPX96, liquidity, amountIn, true);
}
根据输出代币计算下一个价格,即移除amountOut
数量的代币后的价格:
/// @notice Gets the next sqrt price given an output amount of token0 or token1
/// @dev Throws if price or liquidity are 0 or the next price is out of bounds
/// @param sqrtPX96 The starting price before accounting for the output amount
/// @param liquidity The amount of usable liquidity
/// @param amountOut How much of token0, or token1, is being swapped out
/// @param zeroForOne Whether the amount out is token0 or token1
/// @return sqrtQX96 The price after removing the output amount of token0 or token1
function getNextSqrtPriceFromOutput(
uint160 sqrtPX96,
uint128 liquidity,
uint256 amountOut,
bool zeroForOne
) internal pure returns (uint160 sqrtQX96) {
require(sqrtPX96 > 0);
require(liquidity > 0);
// round to make sure that we pass the target price
return
zeroForOne
? getNextSqrtPriceFromAmount1RoundingDown(sqrtPX96, liquidity, amountOut, false)
: getNextSqrtPriceFromAmount0RoundingUp(sqrtPX96, liquidity, amountOut, false);
}
该方法计算白皮书中的公式6.16:
$$ \Delta{x} = \Delta{\frac{1}{\sqrt{P}}} \cdot L $$
展开公式为:
$$ amount0 = x_b - x_a = L \cdot (\frac{1}{\sqrt{P_b}} - \frac{1}{\sqrt{P_a}}) = L \cdot (\frac{\sqrt{P_a} - \sqrt{P_b}}{\sqrt{P_a} \cdot \sqrt{P_b}}) $$
/// @notice Gets the amount0 delta between two prices
/// @dev Calculates liquidity / sqrt(lower) - liquidity / sqrt(upper),
/// i.e. liquidity * (sqrt(upper) - sqrt(lower)) / (sqrt(upper) * sqrt(lower))
/// @param sqrtRatioAX96 A sqrt price
/// @param sqrtRatioBX96 Another sqrt price
/// @param liquidity The amount of usable liquidity
/// @param roundUp Whether to round the amount up or down
/// @return amount0 Amount of token0 required to cover a position of size liquidity between the two passed prices
function getAmount0Delta(
uint160 sqrtRatioAX96,
uint160 sqrtRatioBX96,
uint128 liquidity,
bool roundUp
) internal pure returns (uint256 amount0) {
if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
uint256 numerator1 = uint256(liquidity) << FixedPoint96.RESOLUTION;
uint256 numerator2 = sqrtRatioBX96 - sqrtRatioAX96;
require(sqrtRatioAX96 > 0);
return
roundUp
? UnsafeMath.divRoundingUp(
FullMath.mulDivRoundingUp(numerator1, numerator2, sqrtRatioBX96),
sqrtRatioAX96
)
: FullMath.mulDiv(numerator1, numerator2, sqrtRatioBX96) / sqrtRatioAX96;
}
同样,该方法计算白皮书公式6.7:
$$ L = \frac{\Delta{Y}}{\Delta{\sqrt{P}}} $$
展开公式为:
$$ amount1 = y_b - y_a = L \cdot \Delta{\sqrt{P}} = L \cdot (\sqrt{P_b} - \sqrt{P_a}) $$
/// @notice Gets the amount1 delta between two prices
/// @dev Calculates liquidity * (sqrt(upper) - sqrt(lower))
/// @param sqrtRatioAX96 A sqrt price
/// @param sqrtRatioBX96 Another sqrt price
/// @param liquidity The amount of usable liquidity
/// @param roundUp Whether to round the amount up, or down
/// @return amount1 Amount of token1 required to cover a position of size liquidity between the two passed prices
function getAmount1Delta(
uint160 sqrtRatioAX96,
uint160 sqrtRatioBX96,
uint128 liquidity,
bool roundUp
) internal pure returns (uint256 amount1) {
if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
return
roundUp
? FullMath.mulDivRoundingUp(liquidity, sqrtRatioBX96 - sqrtRatioAX96, FixedPoint96.Q96)
: FullMath.mulDiv(liquidity, sqrtRatioBX96 - sqrtRatioAX96, FixedPoint96.Q96);
本合约定义预言机相关方法。
在交易对合约创建时,默认初始化长度为1的数组用于存储观测点数据;任何用户都可以调用UniswapV3Pool.sol
的increaseObservationCardinalityNext方法扩展预言机的观测点空间,但需要承担扩展空间带来的手续费。
一个预言机观测点包括以下内容:
blockTimestamp
:该观测点写入时的时间tickCumulative
:截止该观测点时间的累计tick
secondsPerLiquidityCumulativeX128
:截止该观测点的累计每流动性持续时间initialized
:观测点是否初始化观测点结构定义如下:
struct Observation {
// the block timestamp of the observation
uint32 blockTimestamp;
// the tick accumulator, i.e. tick * time elapsed since the pool was first initialized
int56 tickCumulative;
// the seconds per liquidity, i.e. seconds elapsed / max(1, liquidity) since the pool was first initialized
uint160 secondsPerLiquidityCumulativeX128;
// whether or not the observation is initialized
bool initialized;
}
本合约包含以下方法:
基于上一个观测点,返回临时观测点对象,但是不写入观测点。
function transform(
Observation memory last,
uint32 blockTimestamp,
int24 tick,
uint128 liquidity
) private pure returns (Observation memory) {
uint32 delta = blockTimestamp - last.blockTimestamp;
return
Observation({
blockTimestamp: blockTimestamp,
tickCumulative: last.tickCumulative + int56(tick) * delta,
secondsPerLiquidityCumulativeX128: last.secondsPerLiquidityCumulativeX128 +
((uint160(delta) << 128) / (liquidity > 0 ? liquidity : 1)),
initialized: true
});
}
首先,计算当前时间与上一个观测点的时间差:delta = blockTimestamp - last.blockTimestamp
。
接着主要计算tickCumulative
和secondsPerLiquidityCumulativeX128
,
其中:tickCumulative: last.tickCumulative + int56(tick) * delta
。
根据白皮书公式5.3-5.5:
$$ \log{1.0001}(P{t_1,t2}) = \frac{\sum{i=t_1}^{t2} \log{1.0001}(P_i)}{t_2 - t_1} \quad \text{(5.3)} $$
$$ \log{1.0001}(P{t_1,t2}) = \frac{a{t2} - a{t_1}}{t_2 - t_1} \quad \text{(5.4)} $$
$$ P_{t_1,t2} = 1.0001^{\frac{a{t2} - a{t_1}}{t_2 - t_1}} \quad \text{(5.5)} $$
这里保存的tickCumulative
即为 $a_{t_n}$ ,其对应的公式为:
$$ tickCumulative = \sum_{i=0}^{tn} \log{1.0001}(P_i) $$
同样,每流动性持续时间secondsPerLiquidityCumulative
为:
$$ secondsPerLiquidityCumulative = \sum_{i=0}^{n} \frac{t_i}{L_i} $$
初始化预言机存储空间,设置第一个slot
。
/// @notice Initialize the oracle array by writing the first slot. Called once for the lifecycle of the observations array
/// @param self The stored oracle array
/// @param time The time of the oracle initialization, via block.timestamp truncated to uint32
/// @return cardinality The number of populated elements in the oracle array
/// @return cardinalityNext The new length of the oracle array, independent of population
function initialize(Observation[65535] storage self, uint32 time)
internal
returns (uint16 cardinality, uint16 cardinalityNext)
{
self[0] = Observation({
blockTimestamp: time,
tickCumulative: 0,
secondsPerLiquidityCumulativeX128: 0,
initialized: true
});
return (1, 1);
}
默认返回的cardinality
和cardinalityNext
都为1,即仅能存放一个观测点数据。
该方法只能被调用一次,实际上是在UniswapV3Pool.sol
的initialize方法中调用:
(uint16 cardinality, uint16 cardinalityNext) = observations.initialize(_blockTimestamp());
写入一次观测点数据。根据之前的描述,只有在UniswapV3Pool
发生mint
、burn
和swap
操作时,才可能触发写入操作。
可以将预言机观测点数组看作一个循环列表,可写入空间由cardinality
和cardinalityNext
决定;当数组空间写满以后,会继续从0位置开始覆盖写。
本方法的参数如下:
self
:预言机观测点数组index
:最后一次写入的观测点索引,从0开始blockTimestamp
:待添加观测点的时间tick
:待添加观测点的tick
liquidity
:待添加观测点时间的全局可用流动性cardinality
:观测点数组当前长度(可写入空间)cardinalityNext
:观测点数组(扩展后的)最新长度function write(
Observation[65535] storage self,
uint16 index,
uint32 blockTimestamp,
int24 tick,
uint128 liquidity,
uint16 cardinality,
uint16 cardinalityNext
) internal returns (uint16 indexUpdated, uint16 cardinalityUpdated) {
Observation memory last = self[index];
// early return if we've already written an observation this block
if (last.blockTimestamp == blockTimestamp) return (index, cardinality);
如果新观测点时间与最后一次观测点时间相同,则直接返回,确保每个区块最多只能写入一次观测点。
// if the conditions are right, we can bump the cardinality
if (cardinalityNext > cardinality && index == (cardinality - 1)) {
cardinalityUpdated = cardinalityNext;
} else {
cardinalityUpdated = cardinality;
}
cardinalityNext > cardinality
,则表示预言机数组被扩容过;如果index == (cardinality - 1)
即上一次写入的位置是最后一个观测点,则本次需要继续写入扩容后的空间,因此cardinalityUpdated
使用扩容后的数组长度cardinalityNext
;cardinality
,因为还未写满。 indexUpdated = (index + 1) % cardinalityUpdated;
更新本次写入观测点数组的索引indexUpdated
,% cardinalityUpdated
是为了计算循环写的索引。
self[indexUpdated] = transform(last, blockTimestamp, tick, liquidity);
调用transform方法计算最新的观测点数据,并写入观测点数组的indexUpdated
位置。
扩容观测点数组,增加可写入的观测点数量。由于合约默认只能保存1个观测点,为了能够支持更多观测点,任何用户都可以手动调用合约以扩容观测点数组。
注意,
grow
方法使用internal
修饰,用户实际上是通过UniswapV3Pool.sol
的increaseObservationCardinalityNext方法进行扩容。
扩容方法会触发SSTORE
操作,因此调用该方法的用户需要支付由此带来的gas开销。
/// @notice Prepares the oracle array to store up to `next` observations
/// @param self The stored oracle array
/// @param current The current next cardinality of the oracle array
/// @param next The proposed next cardinality which will be populated in the oracle array
/// @return next The next cardinality which will be populated in the oracle array
function grow(
Observation[65535] storage self,
uint16 current,
uint16 next
) internal returns (uint16) {
require(current > 0, 'I');
// no-op if the passed next value isn't greater than the current next value
if (next <= current) return current;
// store in each slot to prevent fresh SSTOREs in swaps
// this data will not be used because the initialized boolean is still false
for (uint16 i = current; i < next; i++) self[i].blockTimestamp = 1;
return next;
}
比较两个时间戳的大小。
由于合约使用uint32
类型表示时间戳,其最大值 $2^{32}-1 = 4294967295$,对应的时间为February 7, 2106 6:28:15 AM GMT+00:00
,如果两个时间a
和b
( $a < b$ )正好位于uint32
最大值的两边,b
由于溢出,因此 $a > b$,直接比较数值会导致错误的结果,因此需要统一时间。
注:实际上每136年左右就会有溢出问题。
方法接受3个参数:time
、a
和b
;其中,time
为基准时间,a
和b
在逻辑(时间)上小于等于time
;方法返回一个bool
,表示a
是否在逻辑时间点上小于等于b
。
/// @notice comparator for 32-bit timestamps
/// @dev safe for 0 or 1 overflows, a and b _must_ be chronologically before or equal to time
/// @param time A timestamp truncated to 32 bits
/// @param a A comparison timestamp from which to determine the relative position of `time`
/// @param b From which to determine the relative position of `time`
/// @return bool Whether `a` is chronologically <= `b`
function lte(
uint32 time,
uint32 a,
uint32 b
) private pure returns (bool) {
// if there hasn't been overflow, no need to adjust
if (a <= time && b <= time) return a <= b;
uint256 aAdjusted = a > time ? a : a + 2**32;
uint256 bAdjusted = b > time ? b : b + 2**32;
return aAdjusted <= bAdjusted;
}
a
和b
都小于等于time
,则表示没有发生溢出,因此直接返回a <= b
a
和b
在时间线上均小于等于time
aAdjusted
为补齐2**32
后的时间a
bAdjusted
为补齐后的时间b
aAdjusted
和bAdjusted
因此,该方法在a
、b
与time
存在0到1个 $2^{32}$ 的时间差时是溢出安全的。
不能跨越两个 $2^{32} - 1$ 。
二分查找指定目标时间的观测点。
参数如下:
self
:观测点数组time
:当前区块时间target
:目标时间index
:最后一次写入的观测点索引cardinality
:观测点数组当前长度(可写入空间)/// @notice Fetches the observations beforeOrAt and atOrAfter a target, i.e. where [beforeOrAt, atOrAfter] is satisfied.
/// The result may be the same observation, or adjacent observations.
/// @dev The answer must be contained in the array, used when the target is located within the stored observation
/// boundaries: older than the most recent observation and younger, or the same age as, the oldest observation
/// @param self The stored oracle array
/// @param time The current block.timestamp
/// @param target The timestamp at which the reserved observation should be for
/// @param index The index of the observation that was most recently written to the observations array
/// @param cardinality The number of populated elements in the oracle array
/// @return beforeOrAt The observation recorded before, or at, the target
/// @return atOrAfter The observation recorded at, or after, the target
function binarySearch(
Observation[65535] storage self,
uint32 time,
uint32 target,
uint16 index,
uint16 cardinality
) private view returns (Observation memory beforeOrAt, Observation memory atOrAfter) {
对于二分查找算法,首先需要确认左右边界点。
uint256 l = (index + 1) % cardinality; // oldest observation
uint256 r = l + cardinality - 1; // newest observation
由于最后一次索引为index
,因此循环继续右移一位(并取模)即为左边界点l
(最老的索引,如果已写满一轮的话);右边界点为l + cardinality - 1
,注意,右边界点r
没有取模,因为在二分查找中右边节点一定不能小于左边节点。
uint256 i;
while (true) {
i = (l + r) / 2;
beforeOrAt = self[i % cardinality];
// we've landed on an uninitialized tick, keep searching higher (more recently)
if (!beforeOrAt.initialized) {
l = i + 1;
continue;
}
atOrAfter = self[(i + 1) % cardinality];
如果计算的中点未初始化(即此时数组空间未写满),则使用右半部分区间(往时间点更近的方向)继续进行二分查找。
atOrAfter
为右侧紧邻的观测点。
bool targetAtOrAfter = lte(time, beforeOrAt.blockTimestamp, target);
// check if we've found the answer!
if (targetAtOrAfter && lte(time, target, atOrAfter.blockTimestamp)) break;
if (!targetAtOrAfter) r = i - 1;
else l = i + 1;
}
}
target
位于beforeOrAt
与atOrAfter
时间之间,则退出二分查找,返回beforeOrAt
与atOrAfter
两个观测点beforeOrAt
时间大于目标时间target
,则继续在左半部分(往更小的时间)进行二分查找target
大于atOrAfter
时间,则继续往右半部分(往更大的时间)进行二分查找假设cardinality
为10,index
为5,我们可以画出几个变量的逻辑关系如下:
获取目标时间target
的观测点数据beforeOrAt
和atOrAfter
,满足target
位于[beforeOrAt, atOrAfter]
之间。
/// @notice Fetches the observations beforeOrAt and atOrAfter a given target, i.e. where [beforeOrAt, atOrAfter] is satisfied
/// @dev Assumes there is at least 1 initialized observation.
/// Used by observeSingle() to compute the counterfactual accumulator values as of a given block timestamp.
/// @param self The stored oracle array
/// @param time The current block.timestamp
/// @param target The timestamp at which the reserved observation should be for
/// @param tick The active tick at the time of the returned or simulated observation
/// @param index The index of the observation that was most recently written to the observations array
/// @param liquidity The total pool liquidity at the time of the call
/// @param cardinality The number of populated elements in the oracle array
/// @return beforeOrAt The observation which occurred at, or before, the given timestamp
/// @return atOrAfter The observation which occurred at, or after, the given timestamp
function getSurroundingObservations(
Observation[65535] storage self,
uint32 time,
uint32 target,
int24 tick,
uint16 index,
uint128 liquidity,
uint16 cardinality
) private view returns (Observation memory beforeOrAt, Observation memory atOrAfter) {
// optimistically set before to the newest observation
beforeOrAt = self[index];
// if the target is chronologically at or after the newest observation, we can early return
if (lte(time, beforeOrAt.blockTimestamp, target)) {
if (beforeOrAt.blockTimestamp == target) {
// if newest observation equals target, we're in the same block, so we can ignore atOrAfter
return (beforeOrAt, atOrAfter);
} else {
// otherwise, we need to transform
return (beforeOrAt, transform(beforeOrAt, target, tick, liquidity));
}
}
首先将beforeOrAt
设置为最近一次的观测点:
如果beforeOrAt
时间小于等于目标时间target
:
beforeOrAt
,忽略atOrAfter
beforeOrAt
和target
临时生成一个观测点作为atOrAfter
// now, set before to the oldest observation
beforeOrAt = self[(index + 1) % cardinality];
if (!beforeOrAt.initialized) beforeOrAt = self[0];
否则,可以确认最后(最晚)一个观测点的时间大于target
。
设置beforeOrAt
为循环右移一个位置的观测点,即最老的观测点;如果该观测点未初始化,则表示数组没有写满,因此最早的一定是索引为0的观测点。
// ensure that the target is chronologically at or after the oldest observation
require(lte(time, beforeOrAt.blockTimestamp, target), 'OLD');
确认target
时间大于等于最早的观测点时间,因此此时target
一定位于最早的和最晚观测点的时间区间内,可以使用binarySearch进行二分查找。
// if we've reached this point, we have to binary search
return binarySearch(self, time, target, index, cardinality);
}
获取指定时间的观测点数据。
方法的参数如下:
self
:预言机观测点数组time
:当前区块时间secondsAgo
:距离当前时间多少秒以前的指定时间,根据该时间寻找观测点tick
:目标时间的tick
(价格)index
:最后一次写入的观测点索引liquidity
:当前全局可用流动性cardinality
:预言机数组当前长度(可写入空间)返回:
tickCumulative
:从交易对池子创建以来,截止到secondsAgo
的累计tick
secondsPerLiquidityCumulativeX128
:从交易对池子创建以来,截止到secondsAgo
的累计每流动性持续时间/// @dev Reverts if an observation at or before the desired observation timestamp does not exist.
/// 0 may be passed as `secondsAgo' to return the current cumulative values.
/// If called with a timestamp falling between two observations, returns the counterfactual accumulator values
/// at exactly the timestamp between the two observations.
/// @param self The stored oracle array
/// @param time The current block timestamp
/// @param secondsAgo The amount of time to look back, in seconds, at which point to return an observation
/// @param tick The current tick
/// @param index The index of the observation that was most recently written to the observations array
/// @param liquidity The current in-range pool liquidity
/// @param cardinality The number of populated elements in the oracle array
/// @return tickCumulative The tick * time elapsed since the pool was first initialized, as of `secondsAgo`
/// @return secondsPerLiquidityCumulativeX128 The time elapsed / max(1, liquidity) since the pool was first initialized, as of `secondsAgo`
function observeSingle(
Observation[65535] storage self,
uint32 time,
uint32 secondsAgo,
int24 tick,
uint16 index,
uint128 liquidity,
uint16 cardinality
) internal view returns (int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) {
if (secondsAgo == 0) {
Observation memory last = self[index];
if (last.blockTimestamp != time) last = transform(last, time, tick, liquidity);
return (last.tickCumulative, last.secondsPerLiquidityCumulativeX128);
}
如果secondsAgo == 0
,表示取当前时间的观测点。如果当前时间不等于最后一次写入的观测点时间,则使用transform生成一个临时观测点(注意,这里没有写入该观测点),并返回相关数据。
uint32 target = time - secondsAgo;
(Observation memory beforeOrAt, Observation memory atOrAfter) =
getSurroundingObservations(self, time, target, tick, index, liquidity, cardinality);
根据secondsAgo
计算目标时间target
,使用getSurroundingObservations方法寻找距离目标时间最近的观测点边界beforeOrAt
和atOrAfter
。
if (target == beforeOrAt.blockTimestamp) {
// we're at the left boundary
return (beforeOrAt.tickCumulative, beforeOrAt.secondsPerLiquidityCumulativeX128);
} else if (target == atOrAfter.blockTimestamp) {
// we're at the right boundary
return (atOrAfter.tickCumulative, atOrAfter.secondsPerLiquidityCumulativeX128);
} else {
// we're in the middle
uint32 observationTimeDelta = atOrAfter.blockTimestamp - beforeOrAt.blockTimestamp;
uint32 targetDelta = target - beforeOrAt.blockTimestamp;
return (
beforeOrAt.tickCumulative +
((atOrAfter.tickCumulative - beforeOrAt.tickCumulative) / observationTimeDelta) *
targetDelta,
beforeOrAt.secondsPerLiquidityCumulativeX128 +
uint160(
(uint256(
atOrAfter.secondsPerLiquidityCumulativeX128 - beforeOrAt.secondsPerLiquidityCumulativeX128
) * targetDelta) / observationTimeDelta
)
);
}
根据getSurroundingObservations方法,需要优先使用左边界点beforeOrAt
:
beforeOrAt
时间,则直接返回该观测点的相关数据atOrAfter
时间,则也返回相关数据beforeOrAt
和atOrAfter
之间,则需要根据时间比例计算相关值:
observationTimeDelta
为beforeOrAt
和atOrAfter
的时间差值(下面用 $\Delta{t}$ 表示),targetDelta
为beforeOrAt
和target
的时间差值target
的值应为: $\frac{\Delta{tickCumulative}}{\Delta{t}} \cdot targetDelta$target
的值应为: $\frac{\Delta{secondsPerLiquidityCumulativeX128}}{\Delta{t}} \cdot targetDelta$批量获取指定时间的观测点数据。
该方法主要调用observeSingle获取单个指定时间的观测点数据,然后批量返回。
/// @notice Returns the accumulator values as of each time seconds ago from the given time in the array of `secondsAgos`
/// @dev Reverts if `secondsAgos` > oldest observation
/// @param self The stored oracle array
/// @param time The current block.timestamp
/// @param secondsAgos Each amount of time to look back, in seconds, at which point to return an observation
/// @param tick The current tick
/// @param index The index of the observation that was most recently written to the observations array
/// @param liquidity The current in-range pool liquidity
/// @param cardinality The number of populated elements in the oracle array
/// @return tickCumulatives The tick * time elapsed since the pool was first initialized, as of each `secondsAgo`
/// @return secondsPerLiquidityCumulativeX128s The cumulative seconds / max(1, liquidity) since the pool was first initialized, as of each `secondsAgo`
function observe(
Observation[65535] storage self,
uint32 time,
uint32[] memory secondsAgos,
int24 tick,
uint16 index,
uint128 liquidity,
uint16 cardinality
) internal view returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s) {
require(cardinality > 0, 'I');
tickCumulatives = new int56[](secondsAgos.length);
secondsPerLiquidityCumulativeX128s = new uint160[](secondsAgos.length);
for (uint256 i = 0; i < secondsAgos.length; i++) {
(tickCumulatives[i], secondsPerLiquidityCumulativeX128s[i]) = observeSingle(
self,
time,
secondsAgos[i],
tick,
index,
liquidity,
cardinality
);
}
}
- 本文转载自: github.com/adshao/public...
如果觉得我的文章对您有用,请随意打赏。你的支持将鼓励我继续创作!