Rust

2025年08月17日更新 7 人订阅
原价: ¥ 6 限时优惠
专栏简介 Rust编程语言之错误处理 Rust 语言之 flod Rust编程语言之Cargo、Crates.io详解 Rust编程语言之枚举与模式匹配 Rust语言 - 接口设计的建议之受约束(Constrained) Rust编程语言之无畏并发 Rust语言 - 接口设计的建议之灵活(flexible) Rust语言 - 接口设计的建议之显而易见(Obvious) Rust语言 - 接口设计的建议之不意外(unsurprising) Rust 实战:构建实用的 CLI 工具 HTTPie Rust编程语言学习之高级特性 Rust内存管理揭秘:深度剖析指针与智能指针 解决Rust中数组和切片的编译时大小问题 《Rust编程之道》学习笔记一 Rust Async 异步编程 简易教程 使用 Async Rust 构建简单的 P2P 节点 Rust编程语言入门之模式匹配 Rust async 编程 Rust编程语言之编写自动化测试 Rust编程语言之函数式语言特性:迭代器和闭包 《Rust编程之道》学习笔记二 Rust Tips 比较数值 使用 Rust 开发一个微型游戏 Rust编程初探:深入理解Struct结构体 深入理解Rust中的内存管理:栈、堆与静态内存详解 深入理解 Rust 结构体:经典结构体、元组结构体和单元结构体的实现 深入掌握 Rust 结构体:从模板到实例化的完整指南 深入理解Rust中的结构体:逻辑与数据结合的实战示例 深入理解 Rust 枚举:从基础到实践 掌握Rust字符串的精髓:String与&str的最佳实践 全面解析 Rust 模块系统:实战案例与应用技巧 Rust 中的 HashMap 实战指南:理解与优化技巧 掌握Rust模式匹配:从基础语法到实际应用 Rust 中的面向对象编程:特性与实现指南 深入理解 Rust 的 Pin 和 Unpin:理论与实践解析 Rust Trait 与 Go Interface:从设计到实战的深度对比 从零开始:用 Rust 和 Axum 打造高效 Web 应用 Rust 错误处理详解:掌握 anyhow、thiserror 和 snafu Rust 如何优雅实现冒泡排序 链表倒数 K 节点怎么删?Python/Go/Rust 实战 用 Rust 玩转数据存储:JSON 文件持久化实战 Rust实战:打造高效字符串分割函数 如何高效学习一门技术:从知到行的飞轮效应 Rust 编程入门:Struct 让代码更优雅 Rust 编程:零基础入门高性能开发 用 Rust 写个猜数游戏,编程小白也能上手! Rust 入门教程:变量到数据类型,轻松掌握! 深入浅出 Rust:函数、控制流与所有权核心特性解析 从零开始:用 Rust 和 Axum 打造高效 Web 服务 Rust 集合类型解析:Vector、String、HashMap 深入浅出Rust:泛型、Trait与生命周期的硬核指南 Rust实战:博物馆门票限流系统设计与实现 用 Rust 打造高性能图片处理服务器:从零开始实现类似 Thumbor 的功能 Rust 编程入门实战:从零开始抓取网页并转换为 Markdown 深入浅出 Rust:高效处理二进制数据的 Bytes 与 BytesMut 实战 Rust智能指针:解锁内存管理的进阶之道 用 Rust 打造命令行利器:从零到一实现 mini-grep 解锁Rust代码组织:轻松掌握Package、Crate与Module Rust 所有权:从内存管理到生产力释放 深入解析 Rust 的面向对象编程:特性、实现与设计模式 Rust + Protobuf:从零打造高效键值存储项目 bacon 点燃 Rust:比 cargo-watch 更爽的开发体验 用 Rust 打造微型游戏:从零开始的 Flappy Dragon 开发之旅 函数式编程的Rust之旅:闭包与迭代器的深入解析与实践 探索Rust编程之道:从设计哲学到内存安全的学习笔记 精读《Rust编程之道》:吃透语言精要,彻底搞懂所有权与借用 Rust 避坑指南:搞定数值比较,别再让 0.1 + 0.2 != 0.3 困扰你! 告别 Vec!掌握 Rust bytes 库,解锁零拷贝的真正威力 告别竞态条件:基于 Axum 和 Serde 的 Rust 并发状态管理最佳实践 Rust 异步编程实践:从 Tokio 基础到阻塞任务处理模式 Rust 网络编程实战:用 Tokio 手写一个迷你 TCP 反向代理 (minginx) 保姆级教程:Zsh + Oh My Zsh 终极配置,让你的 Ubuntu 终端效率倍增 不止于后端:Rust 在 Web 开发中的崛起之路 (2024数据解读) Rust核心利器:枚举(Enum)与模式匹配(Match),告别空指针,写出优雅健壮的代码 Rust 错误处理终极指南:从 panic! 到 Result 的优雅之道 想用 Rust 开发游戏?这份超详细的入门教程请收好! 用 Rust 实现 HTTPie:一个现代 CLI 工具的构建过程 Rust 异步实战:从0到1,用 Tokio 打造一个高性能并发聊天室 深入 Rust 核心:彻底搞懂指针、引用与智能指针 Rust 生产级后端实战:用 Axum + sqlx 打造高性能短链接服务 深入 Rust 内存模型:栈、堆、所有权与底层原理 Rust 核心概念解析:引用、借用与内部可变性 掌握 Rust 核心:生命周期与借用检查全解析 Rust 内存布局深度解析:从对齐、填充到 repr 属性 Rust Trait 分派机制:静态与动态的抉择与权衡 Rust Thread::Builder 用法详解:线程命名与栈大小设置 Rust 泛型 Trait:关联类型与泛型参数的核心区别 Rust Scoped Threads 实战:更安全、更简洁的并发编程 Rust 核心设计:孤儿规则与代码一致性解析 Rust 实战:从零构建一个多线程 Web 服务器 Rust Web 开发实战:构建教师管理 API 硬核实战:从零到一,用 Rust 和 Axum 构建高性能聊天服务后端

Rust 实战:从零构建一个多线程 Web 服务器

Rust实战:从零构建一个多线程Web服务器在众多编程语言中,Rust因其卓越的性能、内存安全和强大的并发能力,在系统编程领域备受青睐。构建一个Web服务器是学习和实践这些特性的绝佳项目。本文将摒弃复杂的框架,带你回归本源,从一个基本的TCP监听器开始,一步步迭代,最终构建出一个

Rust 实战:从零构建一个多线程 Web 服务器

在众多编程语言中,Rust 因其卓越的性能、内存安全和强大的并发能力,在系统编程领域备受青睐。构建一个 Web 服务器是学习和实践这些特性的绝佳项目。

本文将摒弃复杂的框架,带你回归本源,从一个基本的 TCP 监听器开始,一步步迭代,最终构建出一个包含线程池、能够处理并发请求并实现优雅停机和清理的多线程 Web 服务器。这不仅是一次代码实践,更是一次深入理解网络编程和 Rust 并发模型的探索之旅。

构建多线程 Web 服务器

  • 在 socket 上监听 TCP 连接
  • 解析少量的 HTTP 请求
  • 创建一个合适的 HTTP 响应
  • 使用线程池改进服务器的吞吐量
  • 优雅的停机和清理
  • 注意:并不是最佳实践

    实操

    创建项目

~/rust
➜ cargo new hello
     Created binary (application) `hello` package

~/rust
➜

main.rs 文件

use std::net::TcpListener;

fn main() {
    let listener = TcpListener::bind("127.0.0.1:7878").unwrap();
    for stream in listener.incoming() {
        let stream = stream.unwrap();

        println!("Connection established!");
    }
}

修改一:

use std::io::prelude::*;
use std::net::TcpListener;
use std::net::TcpStream;

fn main() {
    let listener = TcpListener::bind("127.0.0.1:7878").unwrap();
    for stream in listener.incoming() {
        let stream = stream.unwrap();

        handle_connection(stream);
    }
}

fn handle_connection(mut stream: TcpStream) {
    let mut buffer = [0; 512];

    stream.read(&mut buffer).unwrap();

    println!("Request: {}", String::from_utf8_lossy(&buffer[..]));
}

修改二:

use std::io::prelude::*;
use std::net::TcpListener;
use std::net::TcpStream;

fn main() {
    let listener = TcpListener::bind("127.0.0.1:7878").unwrap();
    for stream in listener.incoming() {
        let stream = stream.unwrap();

        handle_connection(stream);
    }
}

fn handle_connection(mut stream: TcpStream) {
    let mut buffer = [0; 512];

    stream.read(&mut buffer).unwrap();

    // 请求
    // Method Request-URI HTTP-Version CRLF
    // headers CRLF
    // message-body

    // 响应
    // HTTP-Version Status-Code Reason-Phrase CRLF
    // headers CRLF
    // message-body

    let response = "HTTP/1.1 200 OK\r\n\r\n";

    stream.write(response.as_bytes()).unwrap();
    stream.flush().unwrap();

    println!("Request: {}", String::from_utf8_lossy(&buffer[..]));
}

修改三:

use std::fs;
use std::io::prelude::*;
use std::net::TcpListener;
use std::net::TcpStream;

fn main() {
    let listener = TcpListener::bind("127.0.0.1:7878").unwrap();
    for stream in listener.incoming() {
        let stream = stream.unwrap();

        handle_connection(stream);
    }
}

fn handle_connection(mut stream: TcpStream) {
    let mut buffer = [0; 512];

    stream.read(&mut buffer).unwrap();

    // 请求
    // Method Request-URI HTTP-Version CRLF
    // headers CRLF
    // message-body

    // 响应
    // HTTP-Version Status-Code Reason-Phrase CRLF
    // headers CRLF
    // message-body

    let contents = fs::read_to_string("hello.html").unwrap();
    let response = format!("HTTP/1.1 200 OK\r\n\r\n{}", contents);

    stream.write(response.as_bytes()).unwrap();
    stream.flush().unwrap();
}

修改四:

use std::fs;
use std::io::prelude::*;
use std::net::TcpListener;
use std::net::TcpStream;

fn main() {
    let listener = TcpListener::bind("127.0.0.1:7878").unwrap();
    for stream in listener.incoming() {
        let stream = stream.unwrap();

        handle_connection(stream);
    }
}

fn handle_connection(mut stream: TcpStream) {
    let mut buffer = [0; 512];

    stream.read(&mut buffer).unwrap();

    let get = b"GET / HTTP/1.1\r\n";

    if buffer.starts_with(get) {
        let contents = fs::read_to_string("hello.html").unwrap();
        let response = format!("HTTP/1.1 200 OK\r\n\r\n{}", contents);

        stream.write(response.as_bytes()).unwrap();
        stream.flush().unwrap();
    } else {
        let status_line = "HTTP/1.1 404 NOT FOUND\r\n\r\n";
        let contents = fs::read_to_string("404.html").unwrap();

        let response = format!("{}{}", status_line, contents);

        stream.write(response.as_bytes()).unwrap();
        stream.flush().unwrap();
    }
}

修改五:

use std::fs;
use std::io::prelude::*;
use std::net::TcpListener;
use std::net::TcpStream;

fn main() {
    let listener = TcpListener::bind("127.0.0.1:7878").unwrap();
    for stream in listener.incoming() {
        let stream = stream.unwrap();

        handle_connection(stream);
    }
}

fn handle_connection(mut stream: TcpStream) {
    let mut buffer = [0; 512];

    stream.read(&mut buffer).unwrap();

    let get = b"GET / HTTP/1.1\r\n";

    let (status_line, filename) = if buffer.starts_with(get) {
        ("HTTP/1.1 200 OK\r\n\r\n", "hello.html")
    } else {
        ("HTTP/1.1 404 NOT FOUND\r\n\r\n", "404.html")
    };

    let contents = fs::read_to_string(filename).unwrap();

    let response = format!("{}{}", status_line, contents);

    stream.write(response.as_bytes()).unwrap();
    stream.flush().unwrap();
}

hello.html 文件

<!DOCTYPE html>
<html lang="en">
    <head>
        <meta charset="utf-8">
        <title>Hello</title>
    </head>

    <body>
        <h1>Hello</h1>
        <p>Hi from Rust</p>
    </body>
</html>

404.html 文件

<!DOCTYPE html>
<html lang="en">
    <head>
        <meta charset="utf-8">
        <title>Hello!</title>
    </head>
    <body>
        <h1>Oops!</h1>
        <p>Sorry, I don't know what you're asking for.</p>
    </body>
</html>

单线程Web服务器

use std::fs;
use std::thread;
use std::io::prelude::*;
use std::net::TcpListener;
use std::net::TcpStream;
use std::time::Duration;

fn main() {
    let listener = TcpListener::bind("127.0.0.1:7878").unwrap();
    for stream in listener.incoming() {
        let stream = stream.unwrap();

        handle_connection(stream);
    }
}

fn handle_connection(mut stream: TcpStream) {
    let mut buffer = [0; 512];

    stream.read(&mut buffer).unwrap();

    let get = b"GET / HTTP/1.1\r\n";
    let sleep = b"GET /sleep HTTP/1.1\r\n";

    let (status_line, filename) = if buffer.starts_with(get) {
        ("HTTP/1.1 200 OK\r\n\r\n", "hello.html")
    } else if buffer.starts_with(sleep) {
        thread::sleep(Duration::from_secs(5));
        ("HTTP/1.1 200 OK\r\n\r\n", "hello.html")
    } else {
        ("HTTP/1.1 404 NOT FOUND\r\n\r\n", "404.html")
    };

    let contents = fs::read_to_string(filename).unwrap();

    let response = format!("{}{}", status_line, contents);

    stream.write(response.as_bytes()).unwrap();
    stream.flush().unwrap();
}

开启线程

use std::fs;
use std::thread;
use std::io::prelude::*;
use std::net::TcpListener;
use std::net::TcpStream;
use std::time::Duration;

fn main() {
    let listener = TcpListener::bind("localhost:7878").unwrap();
    for stream in listener.incoming() {
        let stream = stream.unwrap();

        thread::spawn(|| {
            handle_connection(stream);
        });
    }
}

fn handle_connection(mut stream: TcpStream) {
    let mut buffer = [0; 512];

    stream.read(&mut buffer).unwrap();

    let get = b"GET / HTTP/1.1\r\n";
    let sleep = b"GET /sleep HTTP/1.1\r\n";

    let (status_line, filename) = if buffer.starts_with(get) {
        ("HTTP/1.1 200 OK\r\n\r\n", "hello.html")
    } else if buffer.starts_with(sleep) {
        thread::sleep(Duration::from_secs(5));
        ("HTTP/1.1 200 OK\r\n\r\n", "hello.html")
    } else {
        ("HTTP/1.1 404 NOT FOUND\r\n\r\n", "404.html")
    };

    let contents = fs::read_to_string(filename).unwrap();

    let response = format!("{}{}", status_line, contents);

    stream.write(response.as_bytes()).unwrap();
    stream.flush().unwrap();
}

lib.rs 文件

use std::thread;

pub struct ThreadPool {
    threads: Vec<thread::JoinHandle<()>>,
}

impl ThreadPool {
    /// Creates a new ThreadPool.
    /// 
    /// The size is the number of threads in the pool.
    /// 
    /// # Panics
    /// 
    /// The `new` function will panic if the size is zero.
    pub fn new(size: usize) -> ThreadPool {
        assert!(size > 0);
        let mut threads = Vec::with_capacity(size);

        for _ in 0..size {
            // create some threads and store them in the vector
        }
        ThreadPool { threads }
    }

    pub fn execute<F>(&self, f: F)
    where
        F: FnOnce() + Send + 'static,
    {
    }
}

lib.rs 修改一

use std::thread;

pub struct ThreadPool {
    workers: Vec<Worker>,
}

impl ThreadPool {
    /// Creates a new ThreadPool.
    ///
    /// The size is the number of threads in the pool.
    ///
    /// # Panics
    ///
    /// The `new` function will panic if the size is zero.
    pub fn new(size: usize) -> ThreadPool {
        assert!(size > 0);
        let mut workers = Vec::with_capacity(size);

        for id in 0..size {
            workers.push(Worker::new(id));
        }
        ThreadPool { workers }
    }

    pub fn execute<F>(&self, f: F)
    where
        F: FnOnce() + Send + 'static,
    {
    }
}

struct Worker {
    id: usize,
    thread: thread::JoinHandle<()>,
}

impl Worker {
    fn new(id: usize) -> Worker {
        let thread = thread::spawn(|| {});

        Worker { id, thread }
    }
}

lib.rs 修改二

use std::thread;
use std::sync::mpsc;

pub struct ThreadPool {
    workers: Vec<Worker>,
    sender: mpsc::Sender<Job>,
}

struct Job;
impl ThreadPool {
    /// Creates a new ThreadPool.
    ///
    /// The size is the number of threads in the pool.
    ///
    /// # Panics
    ///
    /// The `new` function will panic if the size is zero.
    pub fn new(size: usize) -> ThreadPool {
        assert!(size > 0);
        let (sender, receiver) = mpsc::channel();
        let mut workers = Vec::with_capacity(size);

        for id in 0..size {
            workers.push(Worker::new(id, receiver));
        }
        ThreadPool { workers, sender }
    }

    pub fn execute<F>(&self, f: F)
    where
        F: FnOnce() + Send + 'static,
    {
    }
}

struct Worker {
    id: usize,
    thread: thread::JoinHandle<()>,
}

impl Worker {
    fn new(id: usize, receiver: mpsc::Receiver<Job>) -> Worker {
        let thread = thread::spawn(|| {
            receiver;
        });

        Worker { id, thread }
    }
}

lib.rs 修改三

use std::thread;
use std::sync::mpsc;
use std::sync::Arc;
use std::sync::Mutex;

pub struct ThreadPool {
    workers: Vec<Worker>,
    sender: mpsc::Sender<Job>,
}

struct Job;
impl ThreadPool {
    /// Creates a new ThreadPool.
    ///
    /// The size is the number of threads in the pool.
    ///
    /// # Panics
    ///
    /// The `new` function will panic if the size is zero.
    pub fn new(size: usize) -> ThreadPool {
        assert!(size > 0);
        let (sender, receiver) = mpsc::channel();
        let receiver = Arc::new(Mutex::new(receiver));
        let mut workers = Vec::with_capacity(size);

        for id in 0..size {
            workers.push(Worker::new(id, Arc::clone(&receiver)));
        }
        ThreadPool { workers, sender }
    }

    pub fn execute<F>(&self, f: F)
    where
        F: FnOnce() + Send + 'static,
    {
    }
}

struct Worker {
    id: usize,
    thread: thread::JoinHandle<()>,
}

impl Worker {
    fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Job>>>) -> Worker {
        let thread = thread::spawn(|| {
            receiver;
        });

        Worker { id, thread }
    }
}

lib.rs 修改四

use std::thread;
use std::sync::mpsc;
use std::sync::Arc;
use std::sync::Mutex;

pub struct ThreadPool {
    workers: Vec<Worker>,
    sender: mpsc::Sender<Job>,
}

// struct Job;
type Job = Box<FnOnce() + Send + 'static>;
impl ThreadPool {
    /// Creates a new ThreadPool.
    ///
    /// The size is the number of threads in the pool.
    ///
    /// # Panics
    ///
    /// The `new` function will panic if the size is zero.
    pub fn new(size: usize) -> ThreadPool {
        assert!(size > 0);
        let (sender, receiver) = mpsc::channel();
        let receiver = Arc::new(Mutex::new(receiver));
        let mut workers = Vec::with_capacity(size);

        for id in 0..size {
            workers.push(Worker::new(id, Arc::clone(&receiver)));
        }
        ThreadPool { workers, sender }
    }

    pub fn execute<F>(&self, f: F)
    where
        F: FnOnce() + Send + 'static,
    {
        let job = Box::new(f);
        self.sender.send(job).unwrap();
    }
}

struct Worker {
    id: usize,
    thread: thread::JoinHandle<()>,
}

impl Worker {
    fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Job>>>) -> Worker {
        let thread = thread::spawn(move || loop {
            let job = receiver.lock().unwrap().recv().unwrap();

            println!("Worker {} got a job; executing.", id);

            (*job)();
        });

        Worker { id, thread }
    }
}

lib.rs 修改五

use std::thread;
use std::sync::mpsc;
use std::sync::Arc;
use std::sync::Mutex;

pub struct ThreadPool {
    workers: Vec<Worker>,
    sender: mpsc::Sender<Job>,
}

// struct Job;
// type Job = Box<FnOnce() + Send + 'static>;
impl ThreadPool {
    /// Creates a new ThreadPool.
    ///
    /// The size is the number of threads in the pool.
    ///
    /// # Panics
    ///
    /// The `new` function will panic if the size is zero.
    pub fn new(size: usize) -> ThreadPool {
        assert!(size > 0);
        let (sender, receiver) = mpsc::channel();
        let receiver = Arc::new(Mutex::new(receiver));
        let mut workers = Vec::with_capacity(size);

        for id in 0..size {
            workers.push(Worker::new(id, Arc::clone(&receiver)));
        }
        ThreadPool { workers, sender }
    }

    pub fn execute<F>(&self, f: F)
    where
        F: FnOnce() + Send + 'static,
    {
        let job = Box::new(f);
        self.sender.send(job).unwrap();
    }
}

struct Worker {
    id: usize,
    thread: thread::JoinHandle<()>,
}

trait FnBox {
    fn call_box(self: Box<Self>);
}

impl<F: FnOnce()> FnBox for F {
    fn call_box(self: Box<F>) {
        (*self)()
    }
}

type Job = Box<dyn FnBox + Send + 'static>;

impl Worker {
    fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Job>>>) -> Worker {
        let thread = thread::spawn(move || loop {
            let job = receiver.lock().unwrap().recv().unwrap();

            println!("Worker {} got a job; executing.", id);

            // (*job)();
            job.call_box();
        });

        Worker { id, thread }
    }
}

lib.rs 修改六

use std::sync::mpsc;
use std::sync::Arc;
use std::sync::Mutex;
use std::thread;

pub struct ThreadPool {
    workers: Vec<Worker>,
    sender: mpsc::Sender<Job>,
}

// struct Job;
// type Job = Box<FnOnce() + Send + 'static>;
impl ThreadPool {
    /// Creates a new ThreadPool.
    ///
    /// The size is the number of threads in the pool.
    ///
    /// # Panics
    ///
    /// The `new` function will panic if the size is zero.
    pub fn new(size: usize) -> ThreadPool {
        assert!(size > 0);
        let (sender, receiver) = mpsc::channel();
        let receiver = Arc::new(Mutex::new(receiver));
        let mut workers = Vec::with_capacity(size);

        for id in 0..size {
            workers.push(Worker::new(id, Arc::clone(&receiver)));
        }
        ThreadPool { workers, sender }
    }

    pub fn execute<F>(&self, f: F)
    where
        F: FnOnce() + Send + 'static,
    {
        let job = Box::new(f);
        self.sender.send(job).unwrap();
    }
}

struct Worker {
    id: usize,
    thread: thread::JoinHandle<()>,
}

trait FnBox {
    fn call_box(self: Box<Self>);
}

impl<F: FnOnce()> FnBox for F {
    fn call_box(self: Box<F>) {
        (*self)()
    }
}

type Job = Box<dyn FnBox + Send + 'static>;

impl Worker {
    fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Job>>>) -> Worker {
        let thread = thread::spawn(move || loop {
            while let Ok(job) = receiver.lock().unwrap().recv() {
                println!("Worker {} got a job; executing.", id);

                job.call_box();
            }
        });

        Worker { id, thread }
    }
}

优雅的停机和清理

use std::sync::mpsc;
use std::sync::Arc;
use std::sync::Mutex;
use std::thread;

pub struct ThreadPool {
    workers: Vec<Worker>,
    sender: mpsc::Sender<Job>,
}

// struct Job;
// type Job = Box<FnOnce() + Send + 'static>;
impl ThreadPool {
    /// Creates a new ThreadPool.
    ///
    /// The size is the number of threads in the pool.
    ///
    /// # Panics
    ///
    /// The `new` function will panic if the size is zero.
    pub fn new(size: usize) -> ThreadPool {
        assert!(size > 0);
        let (sender, receiver) = mpsc::channel();
        let receiver = Arc::new(Mutex::new(receiver));
        let mut workers = Vec::with_capacity(size);

        for id in 0..size {
            workers.push(Worker::new(id, Arc::clone(&receiver)));
        }
        ThreadPool { workers, sender }
    }

    pub fn execute<F>(&self, f: F)
    where
        F: FnOnce() + Send + 'static,
    {
        let job = Box::new(f);
        self.sender.send(job).unwrap();
    }
}

impl Drop for ThreadPool {
    fn drop(&mut self) {
        for worker in &mut self.workers {
            println!("Shutting down worker {}", worker.id);

            worker.thread.join().unwrap()
        }
    }
}

struct Worker {
    id: usize,
    thread: thread::JoinHandle<()>,
}

trait FnBox {
    fn call_box(self: Box<Self>);
}

impl<F: FnOnce()> FnBox for F {
    fn call_box(self: Box<F>) {
        (*self)()
    }
}

type Job = Box<dyn FnBox + Send + 'static>;

impl Worker {
    fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Job>>>) -> Worker {
        let thread = thread::spawn(move || loop {
            while let Ok(job) = receiver.lock().unwrap().recv() {
                println!("Worker {} got a job; executing.", id);

                job.call_box();
            }
        });

        Worker { id, thread }
    }
}

修改优化一:

use std::sync::mpsc;
use std::sync::Arc;
use std::sync::Mutex;
use std::thread;

pub struct ThreadPool {
    workers: Vec<Worker>,
    sender: mpsc::Sender<Job>,
}

// struct Job;
// type Job = Box<FnOnce() + Send + 'static>;
impl ThreadPool {
    /// Creates a new ThreadPool.
    ///
    /// The size is the number of threads in the pool.
    ///
    /// # Panics
    ///
    /// The `new` function will panic if the size is zero.
    pub fn new(size: usize) -> ThreadPool {
        assert!(size > 0);
        let (sender, receiver) = mpsc::channel();
        let receiver = Arc::new(Mutex::new(receiver));
        let mut workers = Vec::with_capacity(size);

        for id in 0..size {
            workers.push(Worker::new(id, Arc::clone(&receiver)));
        }
        ThreadPool { workers, sender }
    }

    pub fn execute<F>(&self, f: F)
    where
        F: FnOnce() + Send + 'static,
    {
        let job = Box::new(f);
        self.sender.send(job).unwrap();
    }
}

impl Drop for ThreadPool {
    fn drop(&mut self) {
        for worker in &mut self.workers {
            println!("Shutting down worker {}", worker.id);

            if let Some(thread) = worker.thread.take() {
                thread.join().unwrap();
            }
        }
    }
}

struct Worker {
    id: usize,
    thread: Option<thread::JoinHandle<()>>,
}

trait FnBox {
    fn call_box(self: Box<Self>);
}

impl<F: FnOnce()> FnBox for F {
    fn call_box(self: Box<F>) {
        (*self)()
    }
}

type Job = Box<dyn FnBox + Send + 'static>;

impl Worker {
    fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Job>>>) -> Worker {
        let thread = thread::spawn(move || loop {
            while let Ok(job) = receiver.lock().unwrap().recv() {
                println!("Worker {} got a job; executing.", id);

                job.call_box();
            }
        });

        Worker {
            id,
            thread: Some(thread),
        }
    }
}

最终版 lib.rs 文件

use std::sync::mpsc;
use std::sync::Arc;
use std::sync::Mutex;
use std::thread;

enum Message {
    NewJob(Job),
    Terminate,
}

pub struct ThreadPool {
    workers: Vec<Worker>,
    sender: mpsc::Sender<Message>,
}

// struct Job;
// type Job = Box<FnOnce() + Send + 'static>;
impl ThreadPool {
    /// Creates a new ThreadPool.
    ///
    /// The size is the number of threads in the pool.
    ///
    /// # Panics
    ///
    /// The `new` function will panic if the size is zero.
    pub fn new(size: usize) -> ThreadPool {
        assert!(size > 0);
        let (sender, receiver) = mpsc::channel();
        let receiver = Arc::new(Mutex::new(receiver));
        let mut workers = Vec::with_capacity(size);

        for id in 0..size {
            workers.push(Worker::new(id, Arc::clone(&receiver)));
        }
        ThreadPool { workers, sender }
    }

    pub fn execute<F>(&self, f: F)
    where
        F: FnOnce() + Send + 'static,
    {
        let job = Box::new(f);
        self.sender.send(Message::NewJob(job)).unwrap();
    }
}

impl Drop for ThreadPool {
    fn drop(&mut self) {
        println!("Sending terminate message to all workers.");

        for _ in &mut self.workers {
            self.sender.send(Message::Terminate).unwrap();
        }
        println!("Shutting down all workers.");

        for worker in &mut self.workers {
            println!("Shutting down worker {}", worker.id);

            if let Some(thread) = worker.thread.take() {
                thread.join().unwrap();
            }
        }
    }
}

struct Worker {
    id: usize,
    thread: Option<thread::JoinHandle<()>>,
}

trait FnBox {
    fn call_box(self: Box<Self>);
}

impl<F: FnOnce()> FnBox for F {
    fn call_box(self: Box<F>) {
        (*self)()
    }
}

type Job = Box<dyn FnBox + Send + 'static>;

impl Worker {
    fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Message>>>) -> Worker {
        let thread = thread::spawn(move || loop {
            let message = receiver.lock().unwrap().recv().unwrap();
            match message {
                Message::NewJob(job) => {
                    println!("Worker {} got a job; executing.", id);
                    job.call_box();
                }
                Message::Terminate => {
                    println!("Worker {} got a job; executing.", id);
                    break;
                }
            }
        });

        Worker {
            id,
            thread: Some(thread),
        }
    }
}

最终版 main.rs 文件

use hello::ThreadPool;
use std::fs;
use std::io::prelude::*;
use std::net::TcpListener;
use std::net::TcpStream;
use std::thread;
use std::time::Duration;

fn main() {
    let listener = TcpListener::bind("localhost:7878").unwrap();
    let pool = ThreadPool::new(4);
    for stream in listener.incoming().take(2) {
        let stream = stream.unwrap();

        pool.execute(|| {
            handle_connection(stream);
        });
    }

    println!("Shutting down.");
}

fn handle_connection(mut stream: TcpStream) {
    let mut buffer = [0; 512];

    stream.read(&mut buffer).unwrap();

    let get = b"GET / HTTP/1.1\r\n";
    let sleep = b"GET /sleep HTTP/1.1\r\n";

    let (status_line, filename) = if buffer.starts_with(get) {
        ("HTTP/1.1 200 OK\r\n\r\n", "hello.html")
    } else if buffer.starts_with(sleep) {
        thread::sleep(Duration::from_secs(5));
        ("HTTP/1.1 200 OK\r\n\r\n", "hello.html")
    } else {
        ("HTTP/1.1 404 NOT FOUND\r\n\r\n", "404.html")
    };

    let contents = fs::read_to_string(filename).unwrap();

    let response = format!("{}{}", status_line, contents);

    stream.write(response.as_bytes()).unwrap();
    stream.flush().unwrap();
}

运行

hello on  master [?] is 📦 0.1.0 via 🦀 1.67.1 
➜ cargo run  
   Compiling hello v0.1.0 (/Users/qiaopengjun/rust/hello)
    Finished dev [unoptimized + debuginfo] target(s) in 0.43s
     Running `target/debug/hello`
Worker 0 got a job; executing.
Shutting down.
Sending terminate message to all workers.
Shutting down all workers.
Shutting down worker 0
Worker 1 got a job; executing.
Worker 2 got a job; executing.
Worker 3 got a job; executing.
Worker 1 got a job; executing.
Worker 0 got a job; executing.
Shutting down worker 1
Shutting down worker 2
Shutting down worker 3

hello on  master [?] is 📦 0.1.0 via 🦀 1.67.1 took 21.9s 
➜ 

总结

恭喜你!通过一系列的迭代和重构,我们成功地从无到有构建了一个功能虽简但五脏俱全的 Rust 多线程 Web 服务器。

回顾整个过程,我们从最基础的 TcpListener 开始,学会了监听和处理单个连接。随后,为了解决单线程阻塞问题,我们引入了 thread::spawn 来实现并发处理。但为了避免无限制创建线程带来的性能损耗,我们最终实现了一个健壮的 ThreadPool。在这个过程中,我们深入运用了 Rust 的核心并发原语,如用于线程间通信的通道 mpsc、用于共享所有权的原子引用计数 Arc 和保障线程安全的互斥锁 Mutex。最后,通过实现 Drop trait,我们为服务器赋予了优雅停机和资源清理的能力。

虽然这个项目主要是为了学习,距离生产级的服务器(如使用 Tokio 或 async/await 的异步服务器)还有差距,但它为你深入理解底层工作原理打下了坚实的基础。希望这次实践能激发你对 Rust 网络和并发编程的更大兴趣。

参考

点赞 0
收藏 0
分享
本文参与登链社区写作激励计划 ,好文好收益,欢迎正在阅读的你也加入。

0 条评论

请先 登录 后评论