uniswap V3的核心是在一定区间提供流动性。相对V2,代码复杂度增加不少。整个代码主要分为两部分:核心逻辑和辅助功能。核心逻辑又分为两部分:交易池以及Position的管理和Swap功能逻辑。交易池中的每个Position设计并实现成ERC721的Token。Swap核心逻辑在Tick以及Position的管理的基础上实现。
理解了uniswap V3的技术白皮书,看对应的源代码相对轻松。uniswap V3的逻辑复杂一些,代码写的还是比较清晰。强烈建议,先理解uniswap V3的技术白皮书,再查看源代码:
uniswap V3的智能合约的代码链接如下:
https://github.com/Uniswap/uniswap-v3-core
https://github.com/Uniswap/uniswap-v3-periphery
和V2的代码逻辑一致,整个功能分成两部分:核心功能(core)和辅助功能(periphery)。两个部分的关系如下:
辅助功能也分为两个部分:交易池(Position)管理和swap路由管理。NonfungiblePositionManager负责交易池的创建以及流动性的添加删除。SwapRouter是swap路由的管理。UniswapV3Factory是交易池(UniswapV3Pool)统一创建的接口。UniswapV3Pool由UniswapV3PoolDeployer统一部署。UniswapV3Pool是核心逻辑,管理了Tick和Position,实现流动性管理以及一个交易池中swap功能实现。每个Pool中的Position都做成了ERC721的Token。也就是说,每个Position都有独立的ERC721的Token ID。
NonfungiblePositionManager负责交易池的创建以及流通性的添加/删除。先介绍一些全局变量的定义:
/// @dev IDs of pools assigned by this contract
mapping(address => uint80) private _poolIds;
/// @dev Pool keys by pool ID, to save on SSTOREs for position data
mapping(uint80 => PoolAddress.PoolKey) private _poolIdToPoolKey;
/// @dev The token ID position data
mapping(uint256 => Position) private _positions;
/// @dev The ID of the next token that will be minted. Skips 0
uint176 private _nextId = 1;
/// @dev The ID of the next pool that is used for the first time. Skips 0
uint80 private _nextPoolId = 1;
每一个Pool都有一个唯一编号,编号从1开始(_nextPoolId)。_poolIds记录所有交易池的地址和编号的对应关系。每个交易池的关键信息由PoolKey表示(定义在libraries/PoolAddress.sol):
struct PoolKey {
address token0;
address token1;
uint24 fee;
}
每个交易池由交易池的两个Token以及收取的费用唯一标示。_poolIdToPoolKey记录交易池编号和PoolKey的对应关系。
所有交易池中的Position都归总管理,并赋予一个全局唯一的编号(_nextId),从1开始。 每个Position由创建地址以及边界唯一确定:
function compute(
address owner,
int24 tickLower,
int24 tickUpper
) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(owner, tickLower, tickUpper));
}
接着看看NonfungiblePositionManager的构造函数:
constructor(
address _factory,
address _WETH9,
address _tokenDescriptor_
) ERC721Permit('Uniswap V3 Positions NFT-V1', 'UNI-V3-POS', '1') PeripheryImmutableState(_factory, _WETH9) {
_tokenDescriptor = _tokenDescriptor_;
}
_factory
是核心功能(core)中的UniswapV3Factory
的地址。_WETH9
是ETH智能合约的地址。_tokenDescriptor
是ERC721描述信息的接口地址。
通过createAndInitializePoolIfNecessary函数创建一个交易池:
function createAndInitializePoolIfNecessary(
address tokenA,
address tokenB,
uint24 fee,
uint160 sqrtPriceX96
) external payable override returns (address pool) {
逻辑比较简单,通过UniswapV3Factory查看是否已经存在对应的交易池,如果没有,创建交易池,如果有了但是还没有初始化,初始化交易池。深入查看两个函数:createPool和每个交易池的initialize函数。
createPool
核心逻辑是调用UniswapV3PoolDeployer的deploy函数创建UniswapV3Pool智能合约并设置两个token信息,交易费用信息和tick的步长信息:
pool = deploy(address(this), token0, token1, fee, tickSpacing);
接着查看deploy函数,创建UniswapV3Pool智能合约。注意每个交易池的地址的设置,是token0/token1/fee的编码后的结果。也就是说,每个交易池有唯一的地址,并且和PoolKey信息保持一致。通过这种方法,从PoolKey信息可以反推出交易池的地址。
function deploy(
address factory,
address token0,
address token1,
uint24 fee,
int24 tickSpacing
) internal returns (address pool) {
parameters = Parameters({factory: factory, token0: token0, token1: token1, fee: fee, tickSpacing: tickSpacing});
pool = address(new UniswapV3Pool{salt: keccak256(abi.encode(token0, token1, fee))}());
delete parameters;
}
每个交易池的initialize函数初始化交易池的参数和状态。所有交易池的参数和状态用一个数据结构Slot0来记录:
struct Slot0 {
// the current price
uint160 sqrtPriceX96;
// the current tick
int24 tick;
// the most-recently updated index of the observations array
uint16 observationIndex;
// the current maximum number of observations that are being stored
uint16 observationCardinality;
// the next maximum number of observations to store, triggered in observations.write
uint16 observationCardinalityNext;
// the current protocol fee as a percentage of the swap fee taken on withdrawal
// represented as an integer denominator (1/x)%
uint8 feeProtocol;
// whether the pool is locked
bool unlocked;
}
/// @inheritdoc IUniswapV3PoolState
Slot0 public override slot0;
注意的是,在初始化的时候,初始化了交易价格。这样可以把所有流动性的添加逻辑统一。
NonfungiblePositionManager
的mint函数实现初始的流动性的添加。increaseLiquidity
函数实现了流动性的增加。这两个函数的逻辑基本一致,都是通过调用addLiquidity
函数实现。mint需要额外创建ERC721的token。
addLiquidity
实现在LiquidityManagement.sol
:
struct AddLiquidityParams {
address token0;
address token1;
uint24 fee;
address recipient;
int24 tickLower;
int24 tickUpper;
uint128 amount;
uint256 amount0Max;
uint256 amount1Max;
}
/// @notice Add liquidity to an initialized pool
function addLiquidity(AddLiquidityParams memory params)
internal
returns (
uint256 amount0,
uint256 amount1,
IUniswapV3Pool pool
)
先通过交易池的核心信息计算出对应创建的交易池的地址:
PoolAddress.PoolKey memory poolKey =
PoolAddress.PoolKey({token0: params.token0, token1: params.token1, fee: params.fee});
pool = IUniswapV3Pool(PoolAddress.computeAddress(factory, poolKey));
流动性添加的核心逻辑由交易池的mint函数实现。mint函数又是由两个子函数实现:_modifyPosition和_updatePosition。
_updatePosition
为了便于计算,流动性的状态更新是通过流动性(position)边界上的Tick的liquidityNet
来表示:
function _updatePosition(
address owner,
int24 tickLower,
int24 tickUpper,
int128 liquidityDelta,
int24 tick
) private returns (Position.Info storage position) {
_updatePosition
主要就是更新Poisition
对应边界的Tick信息:
flippedLower = ticks.update(
tickLower,
tick,
liquidityDelta,
_feeGrowthGlobal0X128,
_feeGrowthGlobal1X128,
false,
maxLiquidityPerTick
);
flippedUpper = ticks.update(
tickUpper,
tick,
liquidityDelta,
_feeGrowthGlobal0X128,
_feeGrowthGlobal1X128,
true,
maxLiquidityPerTick
);
除了更新Tick信息外,_modifyPosition
需要计算在当前价格情况下一定流动性对应资金金额。当前的价格存在_slot0.tick
中,所以大体的逻辑如下:
if (_slot0.tick
...
} else if (_slot0.tick
...
liquidity = LiquidityMath.addDelta(liquidityBefore, params.liquidityDelta);
} else {
...
}
具体的计算公式可以查看技术白皮书的6.29和6.30公式。值得注意的是,在添加流动性时,如果添加的流动性包括当前的价格,当前的流动性需要更新。也就是上述代码的liquidity的更新。每个交易池中的liquidity保存了当前价格对应的流动性总和。
交易池的mint函数只是实现了当前价格下添加对应流动性的两种Token的金额的计算。代币的转账通过uniswapV3MintCallback函数实现。
删除流动性的逻辑,和添加流动性的逻辑调用关系类似,调用交易池的burn函数。burn函数的核心也是调用_modifyPosition
函数实现流动性的调整。_modifyPosition
函数实现了正负流动性的调整。
在删除完流动性后,每个流动性对应需要取回的资金金额暂时存储在tokensOwed0
和tokensOwed1
变量:
position.tokensOwed0 +=
uint128(amount0) +
uint128(
FullMath.mulDiv(
feeGrowthInside0LastX128 - position.feeGrowthInside0LastX128,
position.liquidity,
FixedPoint128.Q128
)
);
position.tokensOwed1 +=
uint128(amount1) +
uint128(
FullMath.mulDiv(
feeGrowthInside1LastX128 - position.feeGrowthInside1LastX128,
position.liquidity,
FixedPoint128.Q128
)
);
如果某个流动性为0,并且所有的手续费已经收取,可以通过NonfungiblePositionManager
的burn函数删除该流动性对应的ERC721的Token 。
swap的逻辑实现在SwapRouter.sol,实现了多条路径互连swap逻辑。总共有两套函数:
exactInputSingle
和exactOutputSingle
是单交易池的swap函数,一个是从指定swap的输入金额,换取一定的输出,一个是指定swap的输出金额,反推需要多少输入金额。
无论是exactInputSingle
,还是exactOutputSingle
,最终都是调用交易池的swap函数:
function swap(
address recipient,
bool zeroForOne,
int256 amountSpecified,
uint160 sqrtPriceLimitX96,
bytes calldata data
) external override noDelegateCall returns (int256 amount0, int256 amount1) {
recipient
是发起swap的发送地址,zeroForOne
的意思是,是否是Token0转换为Token1,amountSpecified
是需要转换的金额,sqrtPriceLimitX96
是价格上限。
exactInput还是exactOutput通过传入的金额正负进行区分:
bool exactInput = amountSpecified > 0;
整个函数的主体由一个while循环组成。也就是说,swap过程分解成多个小步骤,一点点的调整当前的Tick,直到满足所有的交易量:
while (state.amountSpecifiedRemaining != 0 && state.sqrtPriceX96 != sqrtPriceLimitX96) {
(step.tickNext, step.initialized) = tickBitmap.nextInitializedTickWithinOneWord(
state.tick,
tickSpacing,
zeroForOne
);
step.sqrtPriceNextX96 = TickMath.getSqrtRatioAtTick(step.tickNext);
(state.sqrtPriceX96, step.amountIn, step.amountOut, step.feeAmount) = SwapMath.computeSwapStep(
state.sqrtPriceX96,
(zeroForOne ? step.sqrtPriceNextX96 sqrtPriceLimitX96)
? sqrtPriceLimitX96
: step.sqrtPriceNextX96,
state.liquidity,
state.amountSpecifiedRemaining,
fee
);
在一个价格范围内的Token0/Token1量的变化,可以通过getAmount0Delta
/getAmount1Delta
函数(SqrtPriceMath.sol)计算,也就是6.14/6.16的公式。
if (cache.feeProtocol > 0) {
uint256 delta = step.feeAmount / cache.feeProtocol;
step.feeAmount -= delta;
state.protocolFee += uint128(delta);
}
if (state.liquidity > 0)
state.feeGrowthGlobalX128 += FullMath.mulDiv(step.feeAmount, FixedPoint128.Q128, state.liquidity);
int128 liquidityNet =
ticks.cross(
step.tickNext,
(zeroForOne ? state.feeGrowthGlobalX128 : feeGrowthGlobal0X128),
(zeroForOne ? feeGrowthGlobal1X128 : state.feeGrowthGlobalX128)
);
在swap完成后,结合IUniswapV3SwapCallback接口实现Swap的两种代币转账:
if (zeroForOne) {
if (amount1
uint256 balance0Before = balance0();
IUniswapV3SwapCallback(msg.sender).uniswapV3SwapCallback(amount0, amount1, data);
require(balance0Before.add(uint256(amount0))
} else {
if (amount0
uint256 balance1Before = balance1();
IUniswapV3SwapCallback(msg.sender).uniswapV3SwapCallback(amount0, amount1, data);
require(balance1Before.add(uint256(amount1))
}
多条路径的swap(exactInput/exactOutput)是在exactInputSingle/exactOutputSingle的基本上构建而成。
NonfungiblePositionManager提供了collect函数提取手续费。每个Position中记录在流动性不变的情况下的一定时间内的费用增长率(feeGrowthInside)。在每个Position更新流动性时会更新一次增长率。如果不更新流动性,在提取交易费时,先调用交易池的burn函数更新一下增长率,并主动计算出可以收取的手续费:
pool.burn(position.tickLower, position.tickUpper, 0);
再调用交易池的collect函数,完成交易费的收取。
(amount0, amount1) = pool.collect(recipient, position.tickLower, position.tickUpper, amount0Max, amount1Max);
uniswap V3的核心是在一定区间提供流动性。相对V2,代码复杂度增加不少。整个代码主要分为两部分:核心逻辑和辅助功能。核心逻辑又分为两部分:交易池以及Position的管理和Swap功能逻辑。交易池中的每个Position设计并实现成ERC721的Token。Swap核心逻辑在Tick以及Position的管理的基础上实现。
如果觉得我的文章对您有用,请随意打赏。你的支持将鼓励我继续创作!