概述所谓多签钱包是一种数字钱包,其特点是一笔交易需要被多个私钥持有者(多签人)授权后才能执行:例如钱包由3个多签人管理,每笔交易需要至少2人签名授权。多签钱包可以防止单点故障(私钥丢失,单人作恶),更加去中心化,更加安全,被很多DAO采用。
所谓多签钱包是一种数字钱包,其特点是一笔交易需要被多个私钥持有者(多签人)授权后才能执行:例如钱包由3个多签人管理,每笔交易需要至少
2人签名授权。多签钱包可以防止单点故障(私钥丢失,单人作恶),更加去中心化,更加安全,被很多DAO采用。
gnosis是当下最出名的以太坊多签钱包,代码是开源的,在测试网也可以体验,我这里整理了它的基本逻辑,我们也会在本文中尝试写一个简单版的gnosis,介绍一下其核心原理。
点击create new safe,并选择goerli网络
填写名字:test
填写三个地址,并设置策略为:2/3,即三个人持有私钥,有2个人签名即通过。
最终效果:(手动向地址中转入了token),后续任何转账、合约交互时,点击NewTransaction操作即可,此时需要至少两个人授权才能发起交易。
一共有三个合约:
接下来我们将实现一个简化板的多签钱包:MultiSigWallet,我们将不支持owner动态增减,实现步骤为:
to
:目标合约;value
:交易发送的以太坊数量;data
:calldata,包含调用函数的选择器和参数;nonce
:初始为0
,随着多签合约每笔成功执行的交易递增的值,可以防止签名重放攻击;chainid
:链id,防止不同链的签名重放攻击。MultisigWallet
合约有2
个事件,ExecutionSuccess
和ExecutionFailure
,分别在交易成功和失败时释放,参数为交易哈希。
event ExecutionSuccess(bytes32 txHash); // 交易成功事件
event ExecutionFailure(bytes32 txHash); // 交易失败事件
owners
:多签持有人数组isOwner
:address => bool
的映射,记录一个地址是否为多签持有人。ownerCount
:多签持有人数量threshold
:多签执行门槛,交易至少有n个多签人签名才能被执行。nonce
:初始为0
,随着多签合约每笔成功执行的交易递增的值,可以防止签名重放攻击。 address[] public owners; // 多签持有人数组
mapping(address => bool) public isOwner; // 记录一个地址是否为多签持有人
uint256 public ownerCount; // 多签持有人数量
uint256 public threshold; // 多签执行门槛,交易至少有n个多签人签名才能被执行。
uint256 public nonce; // nonce,防止签名重放攻击
构造函数:调用_setupOwners()
,初始化和多签持有人和执行门槛相关的变量。
// 构造函数,初始化owners, isOwner, ownerCount, threshold
constructor(address[] memory _owners, uint256 _threshold) {
_setupOwners(_owners, _threshold);
}
_setupOwners()
:在合约部署时被构造函数调用,初始化owners
,isOwner
,ownerCount
,threshold
状态变量。传入的参数中,执行门槛需大于等于1
且小于等于多签人数;多签地址不能为0
地址且不能重复。
function _setupOwners(address[] memory _owners, uint256 _threshold) internal {
// threshold没被初始化过
require(threshold == 0, "001");
// 多签执行门槛 小于 多签人数
require(_threshold <= _owners.length, "002");
// 多签执行门槛至少为1
require(_threshold >= 1, "003");
for (uint256 i = 0; i < _owners.length; i++) {
address owner = _owners[i];
// 多签人不能为0地址,本合约地址,不能重复
require(owner != address(0) && owner != address(this) && !isOwner[owner], "004");
owners.push(owner);
isOwner[owner] = true;
}
ownerCount = _owners.length;
threshold = _threshold;
}
execTransaction()
:在收集足够的多签签名后,验证签名并执行交易。传入的参数为目标地址to
,发送的以太坊数额value
,数据data
,以及打包签名signatures
。打包签名就是将收集的多签人对交易哈希的签名,按多签持有人地址从小到大顺序,打包到一个[bytes]数据中。这一步调用了encodeTransactionData()
编码交易,调用了checkSignatures()
检验签名是否有效、数量是否达到执行门槛。
function execTransaction(
address to,
uint256 value,
bytes memory data,
bytes memory signatures
) public payable virtual returns (bool success) {
// 编码交易数据,计算哈希
bytes32 txHash = encodeTransactionData(to, value, data, nonce, block.chainid);
nonce++;
// 检查签名
checkSignatures(txHash, signatures);
// 利用call执行交易,并获取交易结果
(success, ) = to.call{value: value}(data);
require(success , "005");
if (success) emit ExecutionSuccess(txHash);
else emit ExecutionFailure(txHash);
}
checkSignatures()
:检查签名和交易数据的哈希是否对应,数量是否达到门槛,若否,交易会revert。单个签名长度为65字节,因此打包签名的长度要长于threshold * 65
。调用了signatureSplit()
分离出单个签名。这个函数的大致思路:
currentOwner > lastOwner
确定签名来自不同多签(多签地址递增);isOwner[currentOwner]
确定签名者为多签持有人。function checkSignatures(bytes32 dataHash, bytes memory signatures) public view {
// 读取多签执行门槛
uint256 _threshold = threshold;
require(_threshold > 0, "006");
// 检查签名长度足够长
require(signatures.length >= _threshold * 65, "007");
// 通过一个循环,检查收集的签名是否有效
// 大概思路:
// 1. 用ecdsa先验证签名是否有效
// 2. 利用 currentOwner > lastOwner 确定签名来自不同多签(多签地址递增)
// 3. 利用 isOwner[currentOwner] 确定签名者为多签持有人
address lastOwner = address(0);
address currentOwner;
uint8 v;
bytes32 r;
bytes32 s;
uint256 i;
for (i = 0; i < _threshold; i++) {
(v, r, s) = signatureSplit(signatures, i);
// 利用ecrecover检查签名是否有效
currentOwner = ecrecover(keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", dataHash)), v, r, s);
require(currentOwner > lastOwner && isOwner[currentOwner], "008");
lastOwner = currentOwner;
}
}
signatureSplit()
:将单个签名从打包的签名分离出来,参数分别为打包签名signatures
和要读取的签名位置pos
。利用了内联汇编,将签名的r
,s
,和v
三个值分离出来。
function signatureSplit(bytes memory signatures, uint256 pos)
internal
pure
returns (
uint8 v,
bytes32 r,
bytes32 s
)
{
// 签名的格式:{bytes32 r}{bytes32 s}{uint8 v}
assembly {
let signaturePos := mul(0x41, pos)
r := mload(add(signatures, add(signaturePos, 0x20)))
s := mload(add(signatures, add(signaturePos, 0x40)))
v := and(mload(add(signatures, add(signaturePos, 0x41))), 0xff)
}
}
encodeTransactionData()
:将交易数据打包并计算哈希,利用了abi.encode()
和keccak256()
函数。这个函数可以计算出一个交易的哈希,然后在链下让多签人签名并收集,再调用execTransaction()
函数执行。
function encodeTransactionData(
address to,
uint256 value,
bytes memory data,
uint256 _nonce,
uint256 chainid
) public pure returns (bytes32) {
bytes32 safeTxHash =
keccak256(
abi.encode(
to,
value,
keccak256(data),
_nonce,
chainid
)
);
return safeTxHash;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// 基于签名的多签钱包,由gnosis safe合约简化而来,教学使用。
contract MultisigWallet {
event ExecutionSuccess(bytes32 txHash); // 交易成功事件
event ExecutionFailure(bytes32 txHash); // 交易失败事件
address[] public owners; // 多签持有人数组
mapping(address => bool) public isOwner; // 记录一个地址是否为多签
uint256 public ownerCount; // 多签持有人数量
uint256 public threshold; // 多签执行门槛,交易至少有n个多签人签名才能被执行。
uint256 public nonce; // nonce,防止签名重放攻击
receive() external payable {}
// 构造函数,初始化owners, isOwner, ownerCount, threshold
constructor(address[] memory _owners,uint256 _threshold) {
_setupOwners(_owners, _threshold);
}
/// @dev 初始化owners, isOwner, ownerCount,threshold
/// @param _owners: 多签持有人数组
/// @param _threshold: 多签执行门槛,至少有几个多签人签署了交易
function _setupOwners(address[] memory _owners, uint256 _threshold) internal {
// threshold没被初始化过
require(threshold == 0, "001");
// 多签执行门槛 小于 多签人数
require(_threshold <= _owners.length, "002");
// 多签执行门槛至少为1
require(_threshold >= 1, "003");
for (uint256 i = 0; i < _owners.length; i++) {
address owner = _owners[i];
// 多签人不能为0地址,本合约地址,不能重复
require(owner != address(0) && owner != address(this) && !isOwner[owner], "004");
owners.push(owner);
isOwner[owner] = true;
}
ownerCount = _owners.length;
threshold = _threshold;
}
/// @dev 在收集足够的多签签名后,执行交易
/// @param to 目标合约地址
/// @param value msg.value,支付的以太坊
/// @param data calldata
/// @param signatures 打包的签名,对应的多签地址由小到达,方便检查。 ({bytes32 r}{bytes32 s}{uint8 v}) (第一个多签的签名, 第二个多签的签名 ... )
function execTransaction(
address to,
uint256 value,
bytes memory data,
bytes memory signatures
) public payable virtual returns (bool success) {
// 编码交易数据,计算哈希
bytes32 txHash = encodeTransactionData(to, value, data, nonce, block.chainid);
nonce++; // 增加nonce
checkSignatures(txHash, signatures); // 检查签名
// 利用call执行交易,并获取交易结果
(success, ) = to.call{value: value}(data);
require(success , "005");
if (success) emit ExecutionSuccess(txHash);
else emit ExecutionFailure(txHash);
}
/**
* @dev 检查签名和交易数据是否对应。如果是无效签名,交易会revert
* @param dataHash 交易数据哈希
* @param signatures 几个多签签名打包在一起
*/
function checkSignatures(
bytes32 dataHash,
bytes memory signatures
) public view {
// 读取多签执行门槛
uint256 _threshold = threshold;
require(_threshold > 0, "006");
// 检查签名长度足够长
require(signatures.length >= _threshold * 65, "007");
// 通过一个循环,检查收集的签名是否有效
// 大概思路:
// 1. 用ecdsa先验证签名是否有效
// 2. 利用 currentOwner > lastOwner 确定签名来自不同多签(多签地址递增)
// 3. 利用 isOwner[currentOwner] 确定签名者为多签持有人
address lastOwner = address(0);
address currentOwner;
uint8 v;
bytes32 r;
bytes32 s;
uint256 i;
for (i = 0; i < _threshold; i++) {
(v, r, s) = signatureSplit(signatures, i);
// 利用ecrecover检查签名是否有效
currentOwner = ecrecover(keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", dataHash)), v, r, s);
require(currentOwner > lastOwner && isOwner[currentOwner], "008");
lastOwner = currentOwner;
}
}
/// 将单个签名从打包的签名分离出来
/// @param signatures 打包的多签
/// @param pos 要读取的多签index.
function signatureSplit(bytes memory signatures, uint256 pos)
internal
pure
returns (
uint8 v,
bytes32 r,
bytes32 s
)
{
// 签名的格式:{bytes32 r}{bytes32 s}{uint8 v}
assembly {
let signaturePos := mul(0x41, pos)
r := mload(add(signatures, add(signaturePos, 0x20)))
s := mload(add(signatures, add(signaturePos, 0x40)))
v := and(mload(add(signatures, add(signaturePos, 0x41))), 0xff)
}
}
/// @dev 编码交易数据
/// @param to 目标合约地址
/// @param value msg.value,支付的以太坊
/// @param data calldata
/// @param _nonce 交易的nonce.
/// @param chainid 链id
/// @return 交易哈希bytes.
function encodeTransactionData(
address to,
uint256 value,
bytes memory data,
uint256 _nonce,
uint256 chainid
) public pure returns (bytes32) {
bytes32 safeTxHash =
keccak256(
abi.encode(
to,
value,
keccak256(data),
_nonce,
chainid
)
);
return safeTxHash;
}
}
Owner1:0xE8191108261f3234f1C2acA52a0D5C11795Aef9E
Owner2:0xC4109e427A149239e6C1E35Bb2eCD0015B6500B8
Owner3:0x572ed8c1Aa486e6a016A7178E41e9Fc1E59CAe63
["0xE8191108261f3234f1C2acA52a0D5C11795Aef9E","0xC4109e427A149239e6C1E35Bb2eCD0015B6500B8","0x572ed8c1Aa486e6a016A7178E41e9Fc1E59CAe63"], 2
0.1 ETH
到多签合约地址(略);# 参数
to: 0xE8191108261f3234f1C2acA52a0D5C11795Aef9E
value: 100000000000000000
data: 0x
_nonce: 0
chainid: 5
# 结果(待签名信息)
交易哈希:0xeaa5d901b5c497a883b2d1ad5321ead3a41a7443c50dfb4bc140ccd792c19d1c
# 签名地址1: 0x572ed8c1Aa486e6a016A7178E41e9Fc1E59CAe63,
# 待签名hash内容:0xeaa5d901b5c497a883b2d1ad5321ead3a41a7443c50dfb4bc140ccd792c19d1c
# EIP191 hash:0x8c2479bfdefe6a60aa53abb32917d80e50506fa79cd0dd1a66217c9606a3af24
# signature1:
0xa8529b2e088d3bd2ad05582f810f5d56b0ca412578d7a177ab35b3fadbb10e040009fba2108da2d871f7c704611735a304c5f3c6f4bb34b3fc245f40c029188a1c
# 签名地址2: 0xC4109e427A149239e6C1E35Bb2eCD0015B6500B8
# 待签名hash内容:0xeaa5d901b5c497a883b2d1ad5321ead3a41a7443c50dfb4bc140ccd792c19d1c
# EIP191 hash:0x8c2479bfdefe6a60aa53abb32917d80e50506fa79cd0dd1a66217c9606a3af24
# signature2:
0x88bce1e1d3460d43c95ef6d163f6dddc655bd22b78e4489ce50be18c08b6fe1067521326d216bbee7a637ee9b1a4da3468d6938516cc8fb5803eed0cb3d96f831b
# 拼接后到signature为:(去除0x)
0xa8529b2e088d3bd2ad05582f810f5d56b0ca412578d7a177ab35b3fadbb10e040009fba2108da2d871f7c704611735a304c5f3c6f4bb34b3fc245f40c029188a1c88bce1e1d3460d43c95ef6d163f6dddc655bd22b78e4489ce50be18c08b6fe1067521326d216bbee7a637ee9b1a4da3468d6938516cc8fb5803eed0cb3d96f831b
execTransaction()
函数执行交易,将第3步中的交易参数和打包签名作为参数传入。可以看到交易执行成功,ETH
被转出多签,点击查看交易详情转账成功Log如下,ExecutionSuccess成功日志已发出。
浏览器检查,转账成功!
我们可以将WorldCup的owner转移给多签包地址,这样后续操作就变成多签管理了,这里就省略了。
本节介绍的多签依赖于前一节的链下签名,多签方案是对合约资产、安全保障最有效的方案,尤其是对DAO组织而言,我们应该广泛使用多签钱包。
加V入群:Adugii,公众号:阿杜在新加坡,一起抱团拥抱web3,下期见!
关于作者:国内第一批区块链布道者;2017年开始专注于区块链教育(btc, eth, fabric),目前base新加坡,专注海外defi,dex,元宇宙等业务方向。
如果觉得我的文章对您有用,请随意打赏。你的支持将鼓励我继续创作!