所有的程序都必须和计算机内存打交道,如何从内存中申请空间来存放程序的运行内容,如何在不需要的时候释放这些空间,成了重中之重,也是所有编程语言设计的难点之一。
所有的程序都必须和计算机内存打交道,如何从内存中申请空间来存放程序的运行内容,如何在不需要的时候释放这些空间,成了重中之重,也是所有编程语言设计的难点之一。在计算机语言不断演变过程中,出现了三种流派:
其中 Rust 选择了第三种,最妙的是,这种检查只发生在编译期,因此对于程序运行期,不会有任何性能上的损失。
由于所有权是一个新概念,因此读者需要花费一些时间来掌握它,一旦掌握,海阔天空任你飞跃,在本小节,我们将通过 字符串
来引导讲解所有权的相关知识。
先来看看一段来自 C 语言的糟糕代码:
int* foo() {
int a; // 变量a的作用域开始
a = 100;
char *c = "xyz"; // 变量c的作用域开始
return &a;
} // 变量a和c的作用域结束
这段代码虽然可以编译通过,但是其实非常糟糕,变量 a
和 c
都是局部变量,函数结束后将局部变量 a
的地址返回,但局部变量 a
存在栈中,在离开作用域后,a
所申请的栈上内存都会被系统回收,从而造成了 悬空指针(Dangling Pointer)
的问题。这是一个非常典型的内存安全问题,虽然编译可以通过,但是运行的时候会出现错误, 很多编程语言都存在。
再来看变量 c
,c
的值是常量字符串,存储于常量区,可能这个函数我们只调用了一次,也可能我们不再会使用这个字符串,但 "xyz"
只有当整个程序结束后系统才能回收这片内存。
所以内存安全问题,一直都是程序员非常头疼的问题,好在, 在 Rust 中这些问题即将成为历史,因为 Rust 在编译的时候就可以帮助我们发现内存不安全的问题,那 Rust 如何做到这一点呢?
在正式进入主题前,先来一个预热知识。
栈和堆是编程语言最核心的数据结构,但是在很多语言中,你并不需要深入了解栈与堆。 但对于 Rust 这样的系统编程语言,值是位于栈上还是堆上非常重要, 因为这会影响程序的行为和性能。
栈和堆的核心目标就是为程序在运行时提供可供使用的内存空间。
栈按照顺序存储值并以相反顺序取出值,这也被称作后进先出。想象一下一叠盘子:当增加更多盘子时,把它们放在盘子堆的顶部,当需要盘子时,再从顶部拿走。不能从中间也不能从底部增加或拿走盘子!
增加数据叫做进栈,移出数据则叫做出栈。
因为上述的实现方式,栈中的所有数据都必须占用已知且固定大小的内存空间,假设数据大小是未知的,那么在取出数据时,你将无法取到你想要的数据。
与栈不同,对于大小未知或者可能变化的数据,我们需要将它存储在堆上。
当向堆上放入数据时,需要请求一定大小的内存空间。操作系统在堆的某处找到一块足够大的空位,把它标记为已使用,并返回一个表示该位置地址的指针, 该过程被称为在堆上分配内存,有时简称为 “分配”(allocating)。
接着,该指针会被推入栈中,因为指针的大小是已知且固定的,在后续使用过程中,你将通过栈中的指针,来获取数据在堆上的实际内存位置,进而访问该数据。
由上可知,堆是一种缺乏组织的数据结构。想象一下去餐馆就座吃饭: 进入餐馆,告知服务员有几个人,然后服务员找到一个够大的空桌子(堆上分配的内存空间)并领你们过去。如果有人来迟了,他们也可以通过桌号(栈上的指针)来找到你们坐在哪。
在栈上分配内存比在堆上分配内存要快,因为入栈时操作系统无需进行函数调用(或更慢的系统调用)来分配新的空间,只需要将新数据放入栈顶即可。相比之下,在堆上分配内存则需要更多的工作,这是因为操作系统必须首先找到一块足够存放数据的内存空间,接着做一些记录为下一次分配做准备,如果当前进程分配的内存页不足时,还需要进行系统调用来申请更多内存。 因此,处理器在栈上分配数据会比在堆上分配数据更加高效。
当你的代码调用一个函数时,传递给函数的参数(包括可能指向堆上数据的指针和函数的局部变量)依次被压入栈中,当函数调用结束时,这些值将被从栈中按照相反的顺序依次移除。
因为堆上的数据缺乏组织,因此跟踪这些数据何时分配和释放是非常重要的,否则堆上的数据将产生内存泄漏 —— 这些数据将永远无法被回收。这就是 Rust 所有权系统为我们提供的强大保障。
对于其他很多编程语言,你确实无需理解堆栈的原理,但是在 Rust 中,明白堆栈的原理,对于我们理解所有权的工作原理会有很大的帮助。
理解了堆栈,接下来看一下关于所有权的规则,首先请谨记以下规则:
作用域是一个变量在程序中有效的范围, 假如有这样一个变量:
let s = "hello";
变量 s
绑定到了一个字符串字面值,该字符串字面值是硬编码到程序代码中的。s
变量从声明的点开始直到当前作用域的结束都是有效的:
{ // s 在这里无效,它尚未声明
let s = "hello"; // 从此处起,s 是有效的
// 使用 s
} // 此作用域已结束,s不再有效
简而言之,s
从创建开始就有效,然后有效期持续到它离开作用域为止,可以看出,就作用域来说,Rust 语言跟其他编程语言没有区别。
之前提到过,本节会用 String
作为例子,因此这里会进行一下简单的介绍。
我们已经见过字符串字面值 let s = "hello"
,s
是被硬编码进程序里的字符串值(类型为 &str
)。字符串字面值是很方便的,但是它并不适用于所有场景。原因有二:
例如,字符串是需要程序运行时,通过用户动态输入然后存储在内存中的,这种情况,字符串字面值就完全无用武之地。 为此,Rust 为我们提供动态字符串类型: String
, 该类型被分配到堆上,因此可以动态伸缩,也就能存储在编译时大小未知的文本。
可以使用下面的方法基于字符串字面量来创建 String
类型:
let s = String::from("hello");
::
是一种调用操作符,这里表示调用 String
模块中的 from
方法,由于 String
类型存储在堆上,因此它是动态的,你可以这样修改:
let mut s = String::from("hello");
s.push_str(", world!"); // push_str() 在字符串后追加字面值
println!("{}", s); // 将打印 `hello, world!`
言归正传,了解 String
后,一起来看看关于所有权的交互。
先看一段代码
let x = 5;
let y = x;
这段代码并没有发生所有权的转移,原因很简单: 代码首先将 5
绑定到变量 x
,接着拷贝 x
的值赋给 y
,最终 x
和 y
都等于 5
,因为整数是 Rust 基本数据类型,是固定大小的简单值,因此这两个值都是通过自动拷贝的方式来赋值的,都被存在栈中,完全无需在堆上分配内存。
整个过程中的赋值都是通过值拷贝的方式完成(发生在栈中),因此并不需要所有权转移。
可能有同学会有疑问:这种拷贝不消耗性能吗?实际上,这种栈上的数据足够简单,而且拷贝非常非常快,只需要复制一个整数大小(
i32
,4 个字节)的内存即可,因此在这种情况下,拷贝的速度远比在堆上创建内存来得快的多。实际上,之前的小节我们讲到的 Rust 基本类型都是通过自动拷贝的方式来赋值的,就像上面代码一样。
然后再来看一段代码:
let s1 = String::from("hello");
let s2 = s1;
此时,可能某个大聪明( 善意昵称 )已经想到了:嗯,上面一样,把 s1
的内容拷贝一份赋值给 s2
,实际上,并不是这样。之前也提到了,对于基本类型(存储在栈上),Rust 会自动拷贝,但是 String
不是基本类型,而且是存储在堆上的,因此不能自动拷贝。
实际上, String
类型是一个复杂类型,由存储在栈中的堆指针、字符串长度、字符串容量共同组成,其中堆指针是最重要的,它指向了真实存储字符串内容的堆内存,至于长度和容量,如果你有 Go 语言的经验,这里就很好理解:容量是堆内存分配空间的大小,长度是目前已经使用的大小。
总之 String
类型指向了一个堆上的空间,这里存储着它的真实数据,下面对上面代码中的 let s2 = s1
分成两种情况讨论:
String
和存储在堆上的字节数组 如果该语句是拷贝所有数据(深拷贝),那么无论是 String
本身还是底层的堆上数据,都会被全部拷贝,这对于性能而言会造成非常大的影响String
本身 这样的拷贝非常快,因为在 64 位机器上就拷贝了 8字节的指针
、8字节的长度
、8字节的容量
,总计 24 字节,但是带来了新的问题,还记得我们之前提到的所有权规则吧?其中有一条就是:一个值只允许有一个所有者,而现在这个值(堆上的真实字符串数据)有了两个所有者:s1
和 s2
。好吧,就假定一个值可以拥有两个所有者,会发生什么呢?
当变量离开作用域后,Rust 会自动调用 drop
函数并清理变量的堆内存。不过由于两个 String
变量指向了同一位置。这就有了一个问题:当 s1
和 s2
离开作用域,它们都会尝试释放相同的内存。这是一个叫做 二次释放(double free) 的错误,也是之前提到过的内存安全性 BUG 之一。两次释放(相同)内存会导致内存污染,它可能会导致潜在的安全漏洞。
因此,Rust 这样解决问题:当 s1
被赋予 s2
后,Rust 认为 s1
不再有效,因此也无需在 s1
离开作用域后 drop
任何东西,这就是把所有权从 s1
转移给了 s2
,s1
在被赋予 s2
后就马上失效了。
再来看看,在所有权转移后再来使用旧的所有者,会发生什么:
let s1 = String::from("hello");
let s2 = s1;
println!("{}, world!", s1);
由于 Rust 禁止你使用无效的引用,你会看到以下的错误:
error[E0382]: borrow of moved value: `s1`
--> src/main.rs:5:28
|
2 | let s1 = String::from("hello");
| -- move occurs because `s1` has type `String`, which does not implement the `Copy` trait
3 | let s2 = s1;
| -- value moved here
4 |
5 | println!("{}, world!", s1);
| ^^ value borrowed here after move
|
= note: this error originates in the macro `$crate::format_args_nl` which comes from the expansion of the macro `println` (in Nightly builds, run with -Z macro-backtrace for more info)
help: consider cloning the value if the performance cost is acceptable
|
3 | let s2 = s1.clone();
| ++++++++
For more information about this error, try `rustc --explain E0382`.
现在再回头看看之前的规则,相信大家已经有了更深刻的理解:
如果你在其他语言中听说过术语 浅拷贝(shallow copy) 和 深拷贝(deep copy) ,那么拷贝指针、长度和容量而不拷贝数据听起来就像浅拷贝,但是又因为 Rust 同时使第一个变量 s1
无效了,因此这个操作被称为 移动(move) ,而不是浅拷贝。上面的例子可以解读为 s1
被移动到了 s2
中。那么具体发生了什么,用一张图简单说明:
这样就解决了我们之前的问题,s1
不再指向任何数据,只有 s2
是有效的,当 s2
离开作用域,它就会释放内存。 相信此刻,你应该明白了,为什么 Rust 称呼 let a = b
为变量绑定了吧?
再来看一段代码:
fn main() {
let x: &str = "hello, world";
let y = x;
println!("{},{}",x,y);
}
这段代码,大家觉得会否报错?如果参考之前的 String
所有权转移的例子,那这段代码也应该报错才是,但是实际上呢?
这段代码和之前的 String
有一个本质上的区别:在 String
的例子中 s1
持有了通过String::from("hello")
创建的值的所有权,而这个例子中,x
只是引用了存储在二进制中的字符串 "hello, world"
,并没有持有所有权。
因此 let y = x
中,仅仅是对该引用进行了拷贝,此时 y
和 x
都引用了同一个字符串。
首先,Rust 永远也不会自动创建数据的 “深拷贝” 。因此,任何自动的复制都不是深拷贝,可以被认为对运行时性能影响较小。
如果我们确实需要深度复制 String
中堆上的数据,而不仅仅是栈上的数据,可以使用一个叫做 clone
的方法。
let s1 = String::from("hello");
let s2 = s1.clone();
println!("s1 = {}, s2 = {}", s1, s2);
这段代码能够正常运行,说明 s2
确实完整的复制了 s1
的数据。
如果代码性能无关紧要,例如初始化程序时或者在某段时间只会执行寥寥数次时,你可以使用 clone
来简化编程。但是对于执行较为频繁的代码(热点路径),使用 clone
会极大的降低程序性能,需要小心使用!
浅拷贝只发生在栈上,因此性能很高,在日常编程中,浅拷贝无处不在。
再回到之前看过的例子:
let x = 5;
let y = x;
println!("x = {}, y = {}", x, y);
但这段代码似乎与我们刚刚学到的内容相矛盾:没有调用 clone
,不过依然实现了类似深拷贝的效果 —— 没有报所有权的错误。
原因是像整型这样的基本类型在编译时是已知大小的,会被存储在栈上,所以拷贝其实际的值是快速的。这意味着没有理由在创建变量 y
后使 x
无效(x
、y
都仍然有效)。换句话说,这里没有深浅拷贝的区别,因此这里调用 clone
并不会与通常的浅拷贝有什么不同,我们可以不用管它(可以理解成在栈上做了深拷贝)。
Rust 有一个叫做 Copy
的特征,可以用在类似整型这样在栈中存储的类型。如果一个类型拥有 Copy
特征,一个旧的变量在被赋值给其他变量后仍然可用,也就是赋值的过程即是拷贝的过程。
那么什么类型是可 Copy
的呢?可以查看给定类型的文档来确认,这里可以给出一个通用的规则: 任何基本类型的组合可以 Copy
,不需要分配内存或某种形式资源的类型是可以 Copy
的。如下是一些 Copy
的类型:
u32
bool
,它的值是 true
和 false
f64
char
Copy
的时候。比如,(i32, i32)
是 Copy
的,但 (i32, String)
就不是&T
将值传递给函数,一样会发生 移动
或者 复制
,就跟 let
语句一样,下面的代码展示了所有权、作用域的规则:
fn main() {
let s = String::from("hello"); // s 进入作用域
takes_ownership(s); // s 的值移动到函数里 ...
// ... 所以到这里不再有效
let x = 5; // x 进入作用域
makes_copy(x); // x 应该移动函数里,
// 但 i32 是 Copy 的,所以在后面可继续使用 x
} // 这里, x 先移出了作用域,然后是 s。但因为 s 的值已被移走,
// 所以不会有特殊操作
fn takes_ownership(some_string: String) { // some_string 进入作用域
println!("{}", some_string);
} // 这里,some_string 移出作用域并调用 `drop` 方法。占用的内存被释放
fn makes_copy(some_integer: i32) { // some_integer 进入作用域
println!("{}", some_integer);
} // 这里,some_integer 移出作用域。不会有特殊操作
你可以尝试在 takes_ownership
之后,再使用 s
,看看如何报错?例如添加一行 println!("在move进函数后继续使用s: {}",s);
。
fn main() {
let s1 = gives_ownership(); // gives_ownership 将返回值
// 移给 s1
let s2 = String::from("hello"); // s2 进入作用域
let s3 = takes_and_gives_back(s2); // s2 被移动到
// takes_and_gives_back 中,
// 它也将返回值移给 s3
} // 这里, s3 移出作用域并被丢弃。s2 也移出作用域,但已被移走,
// 所以什么也不会发生。s1 移出作用域并被丢弃
fn gives_ownership() -> String { // gives_ownership 将返回值移动给
// 调用它的函数
let some_string = String::from("hello"); // some_string 进入作用域.
some_string // 返回 some_string 并移出给调用的函数
}
// takes_and_gives_back 将传入字符串并返回该值
fn takes_and_gives_back(a_string: String) -> String { // a_string 进入作用域
a_string // 返回 a_string 并移出给调用的函数
}
所有权很强大,避免了内存的不安全性,但是也带来了一个新麻烦: 总是把一个值传来传去来使用它。 传入一个函数,很可能还要从该函数传出去,结果就是语言表达变得非常啰嗦,幸运的是,Rust 提供了新功能解决这个问题。这个我们在后续的小节中再介绍。
如果觉得我的文章对您有用,请随意打赏。你的支持将鼓励我继续创作!