Protobuf是一种平台无关、语言无关、可扩展且轻便高效的序列化数据结构的协议,可以用于网络通信和数据存储,本文看看它如果应用在 Libra 中。
Libra 是Facebook 牵头发布的基于稳定币的区块链项目,大家可以通过社区翻译的[Libra 中文文档](https://learnblockchain.cn/docs/libra/docs/welcome-to-l
Protobuf是一种平台无关、语言无关、可扩展且轻便高效的序列化数据结构的协议,可以用于网络通信和数据存储,本文看看它如果应用在 Libra 中。
Libra 是Facebook 牵头发布的基于稳定币的区块链项目,大家可以通过社区翻译的Libra 中文文档入门Libra。
通过执行./scripts/dev_setup.sh
是可以自动安装相关依赖以及编译整个libra系统的,参考Libra环境搭建。
如果想自己手工安装protobuf相关依赖可以安装如下步骤:
cargo install protobuf
cargo install protobuf-codegen
这是我从libra中抠出来的非源文件,位于transaction.proto 。
syntax = "proto3";
package types;
// Account state as a whole.
// After execution, updates to accounts are passed in this form to storage for
// persistence.
message AccountState {
// Account address
bytes address = 1;
// Account state blob
bytes blob = 2;
}
运行下面的命令:
protoc --rust_out . accountstate.proto
可以看到目录下会多出来一个accountstate.rs 简单看一下生成的AccountState结构体
#[derive(PartialEq,Clone,Default)]
pub struct AccountState {
// message fields
pub address: ::std::vec::Vec<u8>,
pub blob: ::std::vec::Vec<u8>,
// special fields
pub unknown_fields: ::protobuf::UnknownFields,
pub cached_size: ::protobuf::CachedSize,
}
impl<'a> ::std::default::Default for &'a AccountState {
fn default() -> &'a AccountState {
<AccountState as ::protobuf::Message>::default_instance()
}
}
impl AccountState {
pub fn new() -> AccountState {
::std::default::Default::default()
}
// bytes address = 1;
pub fn get_address(&self) -> &[u8] {
&self.address
}
pub fn clear_address(&mut self) {
self.address.clear();
}
// Param is passed by value, moved
pub fn set_address(&mut self, v: ::std::vec::Vec<u8>) {
self.address = v;
}
// Mutable pointer to the field.
// If field is not initialized, it is initialized with default value first.
pub fn mut_address(&mut self) -> &mut ::std::vec::Vec<u8> {
&mut self.address
}
// Take field
pub fn take_address(&mut self) -> ::std::vec::Vec<u8> {
::std::mem::replace(&mut self.address, ::std::vec::Vec::new())
}
// bytes blob = 2;
pub fn get_blob(&self) -> &[u8] {
&self.blob
}
pub fn clear_blob(&mut self) {
self.blob.clear();
}
// Param is passed by value, moved
pub fn set_blob(&mut self, v: ::std::vec::Vec<u8>) {
self.blob = v;
}
// Mutable pointer to the field.
// If field is not initialized, it is initialized with default value first.
pub fn mut_blob(&mut self) -> &mut ::std::vec::Vec<u8> {
&mut self.blob
}
// Take field
pub fn take_blob(&mut self) -> ::std::vec::Vec<u8> {
::std::mem::replace(&mut self.blob, ::std::vec::Vec::new())
}
}
除了这些,还为AccountState自动生成了protobuf::Message,protobuf::Clear和std::fmt::Debug接口。
rust在工程化方面做的非常友好,我们可以编译的过程都可以介入。
也就是如果我们的项目目录下有build.rs,那么在运行 cargo build
之前会自动编译然后运行此程序。 相当于在项目目录下运行 cargo run build.rs
然后再去build。
这看起来有点类似于go中的//go:generate command argument...
, 但是要更为强大,更为灵活。
在Libra中包含了proto的子项目都会在项目根目录下包含一个build.rs. 其内容非常简单。
fn main() {
let proto_root = "src/proto";
let dependent_root = "../../types/src/proto";
build_helpers::build_helpers::compile_proto(
proto_root,
vec![dependent_root],
false, /* generate_client_code */
);
}
这是storage_proto/build.rs, 主要有两个参数是proto_root
和dependent_root
:
proto_root
:表示要自动转换的proto所在目录dependent_root
:表示编译这些proto文件import所引用的目录,也就是protoc -I参数指定的目录. 当然编译成的rs文件如果要正常工作,那么也必须编译dependent_root中的所有proto文件才行至于第三个参数generate_client_code
, 则表示是否生成client代码,也就是如果proto中包含Service,那么是否也生成grpc client的辅助代码。
build_helper 位于common/build_helper
,是为了辅助自动将proto文件编译成rs文件。
pub fn compile_proto(proto_root: &str, dependent_roots: Vec<&str>, generate_client_code: bool) {
let mut additional_includes = vec![];
for dependent_root in dependent_roots {
// First compile dependent directories
compile_dir(
&dependent_root,
vec![], /* additional_includes */
false, /* generate_client_code */
);
additional_includes.push(Path::new(dependent_root).to_path_buf());
}
// Now compile this directory
compile_dir(&proto_root, additional_includes, generate_client_code);
}
// Compile all of the proto files in proto_root directory and use the additional
// includes when compiling.
pub fn compile_dir(
proto_root: &str,
additional_includes: Vec<PathBuf>,
generate_client_code: bool,
) {
for entry in WalkDir::new(proto_root) {
let p = entry.unwrap();
if p.file_type().is_dir() {
continue;
}
let path = p.path();
if let Some(ext) = path.extension() {
if ext != "proto" {
continue;
}
println!("cargo:rerun-if-changed={}", path.display());
compile(&path, &additional_includes, generate_client_code);
}
}
}
fn compile(path: &Path, additional_includes: &[PathBuf], generate_client_code: bool) {
...
}
build.rs 直接调用的就是compile_proto
这个函数,他非常简单就是先调用compile_dir
来编译所有的依赖,然后再编译自身.
而compile_dir则是遍历指定的目录,利用WalkDir
查找当前目录下所有的proto文件,然后逐个调用compile进行编译.
fn compile(path: &Path, additional_includes: &[PathBuf], generate_client_code: bool) {
let parent = path.parent().unwrap();
let mut src_path = parent.to_owned().to_path_buf();
src_path.push("src");
let mut includes = Vec::from(additional_includes);
//写成additional_includes.to_owned()也是可以的
let mut includes = additional_includes.to_owned(); //最终都会调用slice的to_vec
includes.push(parent.to_path_buf());
....
}
要跟操作系统打交道,⾸先需要介绍的是两个字符串类型:OsString
以及它所对应的字符串切⽚类型OsStr
。它们存在于std::ffi模块中。
Rust标准的字符串类型是String和str。它们的⼀个重要特点是保证了内部编码是统⼀的utf-8。但是,当我们和具体的操作系统打交道时,统⼀的utf-8编码是不够⽤的,某些操作系统并没有规定⼀定是⽤的utf-8编码。所以,在和操作系统打交道的时候,String/str类型并不是⼀个很好的选择。 ⽐如在Windows系统上,字符⼀般是⽤16位数字来表⽰的。
为了应付这样的情况,Rust在标准库中又设计了OsString/OsStr来处理这样的情况。这两种类型携带的⽅法跟String/str⾮常类似,⽤起来⼏乎没什么区别,它们之间也可以相互转换。
Rust标准库中⽤PathBuf和Path两个类型来处理路径。它们之间的关系就类似String和str之间的关系:⼀个对内部数据有所有权,还有⼀个只是借⽤。实际上,读源码可知,PathBuf⾥⾯存的是⼀个OsString,Path⾥⾯存的是⼀个OsStr。这两个类型定义在std::path模块中。
通过这种方式可以方便的在字符串和Path,PathBuf之间进行任意转换。 在compile_dir的第23行中,我们提供给WalkDir::new一个&str,rust自动将其转换为了Path。
出于跨平台的考虑,proto文件中的数据类型表达能力肯定不如rust丰富,所以不可避免需要在两者之间进行类型转换. 因此Libra中提供了proto_conv
接口专门用于实现两者之间的转换.
比如:
/// Helper to construct and parse [`proto::storage::GetAccountStateWithProofByStateRootRequest`]
///
/// It does so by implementing `IntoProto` and `FromProto`,
/// providing `into_proto` and `from_proto`.
#[derive(PartialEq, Eq, Clone, FromProto, IntoProto)]
#[ProtoType(crate::proto::storage::GetAccountStateWithProofByStateRootRequest)]
pub struct GetAccountStateWithProofByStateRootRequest {
/// The access path to query with.
pub address: AccountAddress,
/// the state root hash the query is based on.
pub state_root_hash: HashValue,
}
/// Helper to construct and parse [`proto::storage::GetAccountStateWithProofByStateRootResponse`]
///
/// It does so by implementing `IntoProto` and `FromProto`,
/// providing `into_proto` and `from_proto`.
#[derive(PartialEq, Eq, Clone)]
pub struct GetAccountStateWithProofByStateRootResponse {
/// The account state blob requested.
pub account_state_blob: Option<AccountStateBlob>,
/// The state root hash the query is based on.
pub sparse_merkle_proof: SparseMerkleProof,
}
针对GetAccountStateWithProofByStateRootRequest
可以自动在crate::proto::storage::GetAccountStateWithProofByStateRootRequest
和GetAccountStateWithProofByStateRootRequest
之间进行转换,只需要derive(FromProto,IntoProto)
即可。
而针对GetAccountStateWithProofByStateRootResponse
则由于只能手工实现。
impl FromProto for GetAccountStateWithProofByStateRootResponse {
type ProtoType = crate::proto::storage::GetAccountStateWithProofByStateRootResponse;
fn from_proto(mut object: Self::ProtoType) -> Result<Self> {
let account_state_blob = if object.has_account_state_blob() {
Some(AccountStateBlob::from_proto(
object.take_account_state_blob(),
)?)
} else {
None
};
Ok(Self {
account_state_blob,
sparse_merkle_proof: SparseMerkleProof::from_proto(object.take_sparse_merkle_proof())?,
})
}
}
impl IntoProto for GetAccountStateWithProofByStateRootResponse {
type ProtoType = crate::proto::storage::GetAccountStateWithProofByStateRootResponse;
fn into_proto(self) -> Self::ProtoType {
let mut object = Self::ProtoType::new();
if let Some(account_state_blob) = self.account_state_blob {
object.set_account_state_blob(account_state_blob.into_proto());
}
object.set_sparse_merkle_proof(self.sparse_merkle_proof.into_proto());
object
}
}
本文作者为深入浅出共建者:白振轩,欢迎大家关注他的博客 。
如果觉得我的文章对您有用,请随意打赏。你的支持将鼓励我继续创作!