区块链中的数学 - Halo2 Circuit

  • blocksight
  • 更新于 2021-09-06 10:10
  • 阅读 4447

本文介绍另一种基于plonk的proof system--halo2,目前看到基于plonk的工程实现有三种:bellman, dusk, halo2.

写在前面

上一篇介绍了Baby Jubjub 曲线,对椭圆曲线感兴趣的朋友可以看看,一种snark友好的曲线。

本文介绍另一种基于plonk的proof system--halo2,目前看到基于plonk的工程实现有三种:bellman, dusk, halo2. dusk实现接近于paper,其代码也导读过(最近几个月code有所change,可能会有变化),感兴趣可查阅过往plonk视频, bellman做了一定custom变化。halo2工程设计颇有特点!

Halo2 Proof System

Halo 2基于PLONK底层算法和电路构造模式,同时扩展自定义门(custom gate)和lookup(AKA UltraPLONK),

halo2电路书写形式与其他不同(如bellman),采用table或matrix组织定义不同属性值。是根据值的矩形矩阵定义的。使用传统的含义来表示该矩阵的行、列和单元格。

电路包含一系列配置:

  1. 有限域F,其中单元格(cell)值,是F的元素,使用Pasta曲线域。
  2. 数据存放在table中,列有几种:

    • advice:就是我们常说的witness,电路中的秘密输入
    • instance:作为public input, 简称PI,是P和V两方都知道(或者说共享)的值
    • Fixed:作为常量(constant)使用,plonk paper中的$q_c$, 电路的一部分
    • Selector: 确定gate是何种门等,在halo2中作为Fixed 列的一种特殊情况,只能取0或1
  3. Copy constrain 作用到两个或以上不同的cell上
  4. lookup&多项式约束: 约束可以是当前行的给定列中的单元格值,也可以是该行相对的另一行的给定列,即一个门中的多项式约束可以引用多行多列的值,提供了访问灵活性。

如何构造halo2中的table(or matrix),举例电路说明常见r1cs 或者其他plonk电路-->table演化

如图,构造一个简单电路描述,包含两个约束: a + b = c c * d = e

可以构造表如下:

advice advice advice selector(add) selector(mul)
a b c 1
c d e 0 1

表中两行分别表示了上述两个约束方程,第一行满足 a + b - c = 0 , 第二行满足 c * d - e = 0 . 其中还隐含了一个复制约束,column[2][0] = column[0][1]

电路构造实例

halo2 文档中给了一个example, 验证 $a^2+b^2=c$ 其中c是public input ,即instance列值。

  1. 第一步:定义instruction,就是定义需要实现的方法接口,由于计算涉及到乘法,需要mul方法,同时需要加载输入变量和公共输入。
trait NumericInstructions<F: FieldExt>: Chip<F> {
    /// Variable representing a number.
    type Num;
Loads a number into the circuit as a private input.
    fn load_private(&self, layouter: impl Layouter<F>, a: Option<F>) -> Result<Self::Num, Error>;
    /// Loads a number into the circuit as a fixed constant.
    fn load_constant(&self, layouter: impl Layouter<F>, constant: F) -> Result<Self::Num, Error>;
    /// Returns `c = a * b`.
    fn mul(
        &self,
        layouter: impl Layouter<F>,
        a: Self::Num,
        b: Self::Num,
    ) -> Result<Self::Num, Error>;

    /// Exposes a number as a public input to the circuit.
    fn expose_public(
        &self,
        layouter: impl Layouter<F>,
        num: Self::Num,
        row: usize,
    ) -> Result<(), Error>;
}`

load_private就是加载witness, expose_public是设置instance列

2. 第二步:定义config, 代码中chip指实现特定功能且可复用的模块,粒度可大可小,比如本例子中的chip就是非常小的。config中包含运算所需要的列。

/// Chip state is stored in a config struct. This is generated by the chip
/// during configuration, and then stored inside the chip.
#[derive(Clone, Debug)]
struct FieldConfig {
    /// For this chip, we will use two advice columns to implement our instructions.
    /// These are also the columns through which we communicate with other parts of
    /// the circuit.
    advice: [Column<Advice>; 2],

    /// This is the public input (instance) column.
    instance: Column<Instance>,

    // We need a selector to enable the multiplication gate, so that we aren't placing
    // any constraints on cells where `NumericInstructions::mul` is not being used.
    // This is important when building larger circuits, where columns are used by
    // multiple sets of instructions.
    s_mul: Selector,

    /// The fixed column used to load constants.
    constant: Column<Fixed>,
}

3. 第三步:实现chip, 其中最重要的是 configur方法,用来构造table column和gate 约束。

impl<F: FieldExt> FieldChip<F> {
    fn construct(config: <Self as Chip<F>>::Config) -> Self {
        Self {
            config,
            _marker: PhantomData,
        }
    }

    fn configure(
        meta: &mut ConstraintSystem<F>,
        advice: [Column<Advice>; 2],
        instance: Column<Instance>,
        constant: Column<Fixed>,
    ) -> <Self as Chip<F>>::Config {
        meta.enable_equality(instance.into());
        meta.enable_constant(constant);
        for column in &advice {
            meta.enable_equality((*column).into());
        }
        let s_mul = meta.selector();

        // Define our multiplication gate!
        meta.create_gate("mul", |meta| {
            // To implement multiplication, we need three advice cells and a selector
            // cell. We arrange them like so:
            //
            // | a0  | a1  | s_mul |
            // |-----|-----|-------|
            // | lhs | rhs | s_mul |
            // | out |     |       |
            //
            // Gates may refer to any relative offsets we want, but each distinct
            // offset adds a cost to the proof. The most common offsets are 0 (the
            // current row), 1 (the next row), and -1 (the previous row), for which
            // `Rotation` has specific constructors.
            let lhs = meta.query_advice(advice[0], Rotation::cur());
            let rhs = meta.query_advice(advice[1], Rotation::cur());
            let out = meta.query_advice(advice[0], Rotation::next());
            let s_mul = meta.query_selector(s_mul);

            // Finally, we return the polynomial expressions that constrain this gate.
            // For our multiplication gate, we only need a single polynomial constraint.
            //
            // The polynomial expressions returned from `create_gate` will be
            // constrained by the proving system to equal zero. Our expression
            // has the following properties:
            // - When s_mul = 0, any value is allowed in lhs, rhs, and out.
            // - When s_mul != 0, this constrains lhs * rhs = out.
            vec![s_mul * (lhs * rhs - out)]
        });

        FieldConfig {
            advice,
            instance,
            s_mul,
            constant,
        }
    }
}

4. 第四步:对chip实现第一步中定义的instruction接口

/// A variable representing a number.
#[derive(Clone)]
struct Number<F: FieldExt> {
    cell: Cell,
    value: Option<F>,
}

impl<F: FieldExt> NumericInstructions<F> for FieldChip<F> {
    type Num = Number<F>;

    fn load_private(
        &self,
        mut layouter: impl Layouter<F>,
        value: Option<F>,
    ) -> Result<Self::Num, Error> {
        let config = self.config();

        let mut num = None;
        layouter.assign_region(
            || "load private",
            |mut region| {
                let cell = region.assign_advice(
                    || "private input",
                    config.advice[0],
                    0,
                    || value.ok_or(Error::SynthesisError),
                )?;
                num = Some(Number { cell, value });
                Ok(())
            },
        )?;
        Ok(num.unwrap())
    }

    fn load_constant(
        &self,
        mut layouter: impl Layouter<F>,
        constant: F,
    ) -> Result<Self::Num, Error> {
        let config = self.config();

        let mut num = None;
        layouter.assign_region(
            || "load constant",
            |mut region| {
                let cell = region.assign_advice_from_constant(
                    || "constant value",
                    config.advice[0],
                    0,
                    constant,
                )?;
                num = Some(Number {
                    cell,
                    value: Some(constant),
                });
                Ok(())
            },
        )?;
        Ok(num.unwrap())
    }

    fn mul(
        &self,
        mut layouter: impl Layouter<F>,
        a: Self::Num,
        b: Self::Num,
    ) -> Result<Self::Num, Error> {
        let config = self.config();

        let mut out = None;
        layouter.assign_region(
            || "mul",
            |mut region: Region<'_, F>| {
                // We only want to use a single multiplication gate in this region,
                // so we enable it at region offset 0; this means it will constrain
                // cells at offsets 0 and 1.
                config.s_mul.enable(&mut region, 0)?;

                // The inputs we've been given could be located anywhere in the circuit,
                // but we can only rely on relative offsets inside this region. So we
                // assign new cells inside the region and constrain them to have the
                // same values as the inputs.
                let lhs = region.assign_advice(
                    || "lhs",
                    config.advice[0],
                    0,
                    || a.value.ok_or(Error::SynthesisError),
                )?;
                let rhs = region.assign_advice(
                    || "rhs",
                    config.advice[1],
                    0,
                    || b.value.ok_or(Error::SynthesisError),
                )?;
                region.constrain_equal(a.cell, lhs)?;
                region.constrain_equal(b.cell, rhs)?;

                // Now we can assign the multiplication result into the output position.
                let value = a.value.and_then(|a| b.value.map(|b| a * b));
                let cell = region.assign_advice(
                    || "lhs * rhs",
                    config.advice[0],
                    1,
                    || value.ok_or(Error::SynthesisError),
                )?;

                // Finally, we return a variable representing the output,
                // to be used in another part of the circuit.
                out = Some(Number { cell, value });
                Ok(())
            },
        )?;

        Ok(out.unwrap())
    }

    fn expose_public(
        &self,
        mut layouter: impl Layouter<F>,
        num: Self::Num,
        row: usize,
    ) -> Result<(), Error> {
        let config = self.config();

        layouter.constrain_instance(num.cell, config.instance, row)
    }
}
  1. 使用实现的chip构建电路
/// The full circuit implementation.
/// In this struct we store the private input variables. We use `Option<F>` because
/// they won't have any value during key generation. During proving, if any of these
/// were `None` we would get an error.
#[derive(Default)]
struct MyCircuit<F: FieldExt> {
    constant: F,
    a: Option<F>,
    b: Option<F>,
}

impl<F: FieldExt> Circuit<F> for MyCircuit<F> {
    // Since we are using a single chip for everything, we can just reuse its config.
    type Config = FieldConfig;
    type FloorPlanner = SimpleFloorPlanner;

    fn without_witnesses(&self) -> Self {
        Self::default()
    }

    fn configure(meta: &mut ConstraintSystem<F>) -> Self::Config {
        // We create the two advice columns that FieldChip uses for I/O.
        let advice = [meta.advice_column(), meta.advice_column()];

        // We also need an instance column to store public inputs.
        let instance = meta.instance_column();

        // Create a fixed column to load constants.
        let constant = meta.fixed_column();

        FieldChip::configure(meta, advice, instance, constant)
    }

    fn synthesize(
        &self,
        config: Self::Config,
        mut layouter: impl Layouter<F>,
    ) -> Result<(), Error> {
        let field_chip = FieldChip::<F>::construct(config);

        // Load our private values into the circuit.
        let a = field_chip.load_private(layouter.namespace(|| "load a"), self.a)?;
        let b = field_chip.load_private(layouter.namespace(|| "load b"), self.b)?;

        // Load the constant factor into the circuit.
        let constant =
            field_chip.load_constant(layouter.namespace(|| "load constant"), self.constant)?;

        // We only have access to plain multiplication.
        // We could implement our circuit as:
        //     asq  = a*a
        //     bsq  = b*b
        //     absq = asq*bsq
        //     c    = constant*asq*bsq
        //
        // but it's more efficient to implement it as:
        //     ab   = a*b
        //     absq = ab^2
        //     c    = constant*absq
        let ab = field_chip.mul(layouter.namespace(|| "a * b"), a, b)?;
        let absq = field_chip.mul(layouter.namespace(|| "ab * ab"), ab.clone(), ab)?;
        let c = field_chip.mul(layouter.namespace(|| "constant * absq"), constant, absq)?;

        // Expose the result as a public input to the circuit.
        field_chip.expose_public(layouter.namespace(|| "expose c"), c, 0)
    }
}

完整代码可从下方”本文参考“中找到!

小结

需要说明的一点,构造的table不一定需要所有单元格都填满数据,可能一些表格是空的(或者默认值),到这里可以总结下halo2与其他实现方案的不同点:

  1. halo2 电路中每个门的约束范围不一定都是某一行的元素,也可以是不同行列的元素,通过offset/rotation指定不同cell,这一点与其他算术门工程实现由很大不同,也是其灵活度的表现
  2. halo2中的每个门,多项式约束可以是多个,所以对门的概念理解有所不同,不能根据门的使用数量来作为衡量算法复杂度的唯一因素,还需要结合其他因素整合考虑(i.e. table宽度,degree等)。
  3. 原生halo2实现并不使用Kate 承若方案,但是需要时候也可以改造支持,目前已经在进行中。

本文参考: the halo2 book: https://zcash.github.io/halo2/concepts/proofs.html

halo2 repo: https://github.com/zcash/halo2


原文链接:https://mp.weixin.qq.com/s/01H6X1iT0kATn8ev-0A7-A 欢迎关注公众号:blocksight


相关阅读:

区块链中的数学--PLookup PLookup

相关plonk系列视频

区块链中的数学 -- Accumulator(累加器) 累加器与RSA Accumulator

区块链中的数学 - Kate承诺batch opening Kate承诺批量证明

区块链中的数学 - 多项式承诺 多项式知识和承诺

区块链中的数学 - Pedersen密钥共享 Pedersen 密钥分享

区块链中的数学 - Pedersen承诺 密码学承诺--Pedersen承诺

区块链中的数学 - 不经意传输 不经意传输协议

区块链中的数学 - RSA算法加解密过程及原理 RSA加解密算法

区块链中的数学 - BLS门限签名 BLS m of n门限签名

Schorr 签名基础篇 Schnorr签名与椭圆曲线

区块链中的数学-Uniwap自动化做市商核心算法解析 Uniwap核心算法解析(中)

点赞 0
收藏 0
分享
本文参与登链社区写作激励计划 ,好文好收益,欢迎正在阅读的你也加入。

0 条评论

请先 登录 后评论
blocksight
blocksight
江湖只有他的大名,没有他的介绍。