深入探讨了 fhEVMs 如何利用全同态加密来增强 EVM 兼容区块链中的隐私性。
Paillier 同态加密算法
FHE全同态加密介绍——小白版
“可编程密码学”一词来指代今天变得实用的第二代密码学原语。这些原语的定义特征是它们比第一代密码学灵活得多:它们允许我们在密码协议内部或之上执行通用计算。
几分钟搞懂全同态加密FHE:运行模式与应用场景
FHE和ZK、MPC 这三种技术分别是什么? 它们如何工作?
Concrete ML v1.8 发布,主要改进了LLM混合微调的速度和可用性,通过优化的FHE后端和新的低秩逼近API,实现了在加密数据上进行隐私保护的LLM微调。该版本还支持Python 3.12,提供了一个更高效的LLM微调API,并利用GPU加速编译模型的评估过程,降低了成本和延迟。
Concrete ML v1.9 版本发布,引入了对 TFHE-rs 密文格式的支持,使 Concrete ML 模型能够无缝集成到基于 Rust 的 FHE 管道中。
Zama 发布了 Concrete v2.10,引入了对 Rust 的支持,通过 concrete-macro 和 concrete 这两个 crates,可以直接在 Rust 中使用 FHE(全同态加密) 功能,使得开发者能够更容易地将 Python 原型移植到生产环境。此外,新版本还增强了与 TFHE-rs 的互操作性。
Concrete v2.8版本发布,主要更新包括: Concrete与TFHE-rs的互操作性,允许开发者在两者之间转换整数,利用各自的优势;自动模块追踪功能,简化了模块编译的流程;以及新增了多个教程,展示了FHE和Concrete在实际应用中的用例。此外,新版本还包括各种优化和错误修复,尤其是在Concrete GPU运行时,提高了FHE评估的速度。
本文介绍了Zama Bounty Program Season 7的获奖方案,该方案使用全同态加密(FHE)和Concrete ML实现了加密图像的隐形水印。该方案包含一个编码器神经网络(用于嵌入水印)和一个解码器神经网络(用于提取水印)。文章还讨论了该方案的性能和水印提取方法,以及其在版权保护、身份验证和篡改检测等方面的应用潜力。
Zama宣布与摩根大通的Kinexys合作,成功完成了基于全同态加密(FHE)技术的概念验证项目,该项目专注于金融领域的隐私保护。通过fhEVM,实现了在以太坊智能合约上的加密交易,确保投资者在基金认购、二级市场交易、原子结算和KYC/AML合规等场景中的数据隐私和安全。
Zama 发布了 TFHE-rs v1.1 版本,该版本在 GPU 和 CPU 后端都有重大改进和新特性。GPU 方面,升级了后端,采用了与 CPU 相同的默认加密参数,显著提高了多 GPU 的支持,CPU 方面,通过支持更多的标量案例扩展了算子集,该版本还引入了分块引导密钥生成,以更好地支持内存受限环境中的操作。
新加坡国立大学(NUS)的一组计算机科学学生在 TikTok TechJam 2024 上使用 Zama 的 Concrete ML 和全同态加密 (FHE) 技术,开发了一个广告服务系统,展示了 FHE 如何为在线广告开创一个尊重隐私的新时代。该项目名为 AnonymousAds,旨在保护用户隐私的前提下,实现个性化广告投放。
该文档描述了concrete.ml.torch.compile模块,该模块提供了将 PyTorch 和 ONNX 模型编译为 FHE 等效形式的功能。
concrete.ml.torch.compile