Concrete ML v1.7 版本发布,引入了多项新功能,包括在加密数据上微调 LLM 模型和神经网络,利用 GPU 加速提升加密推理的性能(最高可达 1-2 倍),以及展示了一个通过加密 DNA 预测祖源的 Hugging Face space 示例。此外,该版本还支持 Python 3.11 和 PyTorch 2。
Concrete v2.7版本发布,引入了GPU加速功能,通过安装GPU wheel并设置use_gpu选项即可利用GPU进行FHE计算加速,最多可提速2.5倍。同时,新版本还扩展了函数组合的支持,通过分区优化和指定函数依赖关系,进一步提升模块的性能。此外,v2.7还包含其他一些小的改进。
TFHE-rs v0.6 版本引入了零知识证明技术,增强了 GPU 对有符号整数运算的支持,并引入了加密随机数生成等新的加密功能。该版本现在包含 Marc Joye 提出的公钥方案,并生成零知识证明以验证公钥加密过程的正确性。此外,新版本还支持 GPU 上的有符号整数运算,并改进了 GPU 用户的多位 PBS。
TFHE-rs v0.8版本发布,引入了加密数组类型,并增强了多GPU计算能力,开发者可以更轻松地处理向量和张量,同时大幅缩短GPU上算术运算的计算时间,此外,新版本还引入了诸多新特性,包括后同态计算密文压缩、更多基于GPU的同态运算、以及CPU运算的改进等。
Zama 发布了 TFHE-rs (v0.8)、Concrete (v2.8) 和 Concrete ML (v1.7) 的新版本。