本文介绍了后量子密码学的基本概念及其在应对量子计算威胁中的应用,重点讨论了NIST选定的晶格基算法,如Kyber和Dilithium,并详细解释了这些算法的密钥生成、封装、解封装以及签名过程。
文章讨论了后量子密码(PQ)的必要性和优势,即使量子计算机没有实际出现,新的PQ标准也比传统的密码算法更安全、更有弹性且更灵活。当前广泛使用的公钥密码术存在风险,而后量子密码通过基于多种数学难题构建算法、采用现代设计和提供使用案例灵活性来解决这些问题,从而实现密码多样化和现代化。
文章讨论了后量子密码学中密钥封装机制(KEM)的选择,重点关注了NIST后量子密码竞赛的进展。
文章解释了SHA-3和Keccak之间的差异,指出许多旧代码使用Keccak而非标准SHA-3,并呼吁开发者在使用相关库时明确区分,以避免混淆。
文章讨论了量子计算的未来及其对加密技术的影响。量子计算机的发展将带来巨大的计算能力提升,但也对现有公钥加密方法构成威胁。NIST 正在开发新的加密标准来应对这一风险。展示了一种将经典图像转换为量子图像并通过量子算法进行加密和解密的方法,预示着量子计算在信息安全领域有着广阔的应用前景。