在以太坊上,智能合约并非“上传即运行”,而是经过部署、创建账户、执行初始化代码、调用函数等多个阶段,最终形成可被调用的链上代码单元。理解这一流程,有助于开发者编写更可靠的合约,也有助于安全分析和调试优化。
以太坊并未使用传统数据库,而是构建出一套具备可验证性、安全性与高效索引能力的底层数据结构 ——Merkle Patricia Trie(MPT)。
它支撑了账户状态、合约变量、交易记录的存储机制,也是轻节点验证和跨链证明的基础。
以太坊虚拟机(EVM)是智能合约执行的“心脏”,其设计体现了 Web3 对安全性、确定性与去中心化计算的极致追求。它通过栈式模型、内存分区、Gas 管控与调用帧机制,支撑了整个智能合约生态。
以太坊的每一次状态更新背后,都离不开“交易”的驱动。本文将系统解析以太坊交易的构造、生命周期和执行机制,并深入剖析 Gas 的作用、计费模型与 EIP-1559 升级影响。掌握交易与 Gas 的核心机制,是开发高性能合约与优化用户体验的基础。
随着区块链技术的发展,“Web3”正逐渐从技术圈走向主流视野。但你是否真正了解它与Web2的核心差异?这不仅是前端技术栈的演进,更是一场关于控制权与价值分配的深刻革命
以太坊采用状态账户模型(State-based Account Model),而非比特币的 UTXO 模型。本文将深入剖析账户的分类、数据结构、状态存储方式,以及底层 Merkle Patricia Trie 的工作原理,为理解智能合约的执行逻辑打下基础。
以太坊不仅是一种数字资产,更是一种去中心化的计算范式。它以区块链为基础,在全球节点间构建出图灵完备的逻辑执行平台(智能合约)。
本章将从以太坊的诞生背景出发,剖析其架构设计目标、模块组成与比特币的根本区别,帮助你建立 Web3 世界的第一性理解。
本篇作为“以太坊工作原理”专题的第一篇,从区块链的结构和核心特性出发,讲解区块、链式结构、数据不可篡改原理、与传统数据库的区别,并阐述区块链作为“信任机器”的技术本质,为后续深入以太坊打下概念基础。
不同链的 Gas 机制各异,EVM 链多采用类似的 opcode 计价模型,而非 EVM 链如 Solana、Sui 则引入更抽象的资源计量逻辑。本文系统对比主流链的 gas 模型及费用构成,帮助开发者理解其背后的执行差异,并给出跨链开发的实际建议。
如何判断合约最耗 gas 的部分?如何提前模拟交易失败?本篇系统介绍链上 gas 分析工具,包括 Tenderly、Foundry、Etherscan Gas Profiler 等,助你从执行前、执行中、执行后全面掌控 gas 使用。