本文详细介绍了基于椭圆曲线的数字签名方案,包括ECDSA、EdDSA和Schnorr,分析了它们的原理、实现和应用,并比较了它们在区块链中的使用情况。
本文介绍了椭圆曲线在加密和数字签名中的应用,详细阐述了公钥和私钥基于离散对数问题的生成原理,以及椭圆曲线集成加密方案(ECIES)和椭圆曲线数字签名算法(ECDSA)的工作机制。文章强调椭圆曲线群运算在保障加密和签名安全性中的核心作用,并指出哈希函数等进阶主题将在后续讨论。
这篇文章介绍了Merkle树的基本概念及其实现,从构建一个Merkle树的JavaScript示例开始,涵盖了Merkle证明和Delta Merkle证明的原理与实现。通过对树的节点、路径、兄弟节点等概念的详细解释,读者能够更深入地理解Merkle树在数据传输和存储中的应用,尤其是在Layer 2解决方案中的重要性。
密码学签名是区块链的关键技术之一,可以在不暴露私钥的前提下证明地址的所有权。该技术主要用来签署交易(当然也可以用来签署其他任意消息)。本文会讲解数字签名技术在以太坊协议中的用法。
本文介绍了椭圆曲线在密码学中的应用,解释了椭圆曲线如何通过特定的群操作(如弦切线规则)形成密码学所需的数学结构。文章详细讨论了椭圆曲线群的定义、有限域上的点运算、群单位元的引入以及点加倍操作,并指出这些数学结构为加密和数字签名提供了难以破解的难题基础。
本文介绍了密码学中的基本数学概念,特别是模运算和数学群的概念,为理解加密技术和数字签名等密码学技术奠定了基础。作者通过简单的例子解释了模运算和群生成器的概念,并提到这些数学概念在密码学中的重要性。