零知识证明(ZKPs)是一种加密技术,允许一方在不暴露具体信息的情况下证明其对该信息的知识。文章深入探讨了ZKPs的工作原理、种类及其在区块链应用中的作用,旨在帮助程序员理解如何实际实现这一技术,并涵盖了交互式和非交互式证明、关键组件以及信任设置等重要概念。
以太坊基金会和Mina基金会发布提案征集(RfP),旨在设计并实现一种在以太坊上验证Pickles SNARK的机制。目标是实现Mina区块链在以太坊上的完全验证,从而实现两个链之间的互操作,并使应用程序更广泛地在以太坊上使用递归SNARK。该提案详细介绍了验证过程中的关键步骤,包括哈希计算、算术方程检查和多标量乘法(MSM),并提出了使用辅助证明系统来验证计算密集型步骤的方案。
本文介绍了在zkEVM中使用plookup来创建执行轨迹的方法,以克服字节码转换为SNARK的难题。通过将操作码及其索引存储在查找表t_opcodes中,并在执行证明阶段允许prover选择任何操作码,结合程序计数器检查索引的正确性,从而实现对循环和复杂操作码(如returndatacopy和哈希函数)的支持,优化了zkEVM的性能,降低了约束开销。
本文深入探讨了加密货币桥接的概念以及其重要性,阐述了桥接如何促进不同区块链之间的数据传输与互操作性,并分析了现有桥接技术的优缺点。文中提出了理想桥接的特征,强调在多链环境中,如何通过权衡安全性和可扩展性来寻找最佳解决方案,最后展望了未来的桥接技术发展方向。
本文深入探讨了以太坊第二层(L2)扩展方案中的欺诈证明(Fraud Proofs)和有效性证明(Validity Proofs)的区别,分析了它们各自的优势和劣势,并讨论了它们在应对51%攻击时的表现。