本文详细介绍了数字签名的多种变体,包括盲签名、环签名和多签名。这些签名技术在特定场景下非常有用,如保护用户隐私、实现匿名签名以及多人共同签名。文章通过数学公式和图形化的方式解释了这些技术的实现原理。
本文是系列文章的第一篇,讨论了在比特币中使用Taproot和假设的CAT操作码实现契约(covenant)的技术。文章详细介绍了如何利用Schnorr签名的数学特性来模拟CHECKSIGFROMSTACK的功能,并探讨了ECDSA和BIP340签名在契约中的应用。
CAT
CHECKSIGFROMSTACK
本文深入探讨了比特币的脚本系统及其签名方案,包括Schnorr签名和ECDSA签名,并阐述了多个项目如何通过这些技术构建复杂的功能,如BitVM和zkBitcoin等。文章详细分析了比特币脚本的工作机制、特定脚本类型以及Taproot、SegWit及FROST签名等扩展方案。全篇结构清晰、逻辑严谨,适合有一定技术基础的读者阅读。
本文深入探讨了椭圆曲线密码学(ECC)和Schnorr签名的运作原理,特别是如何通过聚合和批量验证来提升效率。同时,文章与其他数字签名算法(如ECDSA)进行了对比,分析了它们的优劣,以及Schnorr签名在区块链上的实际应用,尤其是在以太坊中的整合。
本文探讨了如何利用以太坊的 ecrecover 函数验证 Schnorr 签名。通过将 Schnorr 签名的验证过程与 ecrecover 的处理相结合,提供了一种低成本的签名验证方法,并提供了具体的 Solidity 实现代码。文中还引用了 Chainlink 的相关实现与安全性的注意事项。
ecrecover
本文详细介绍了Schnorr签名和Musig的实现原理。首先讲解了与椭圆曲线相关的基础知识,然后深入探讨了Schnorr签名的签名和验证过程,以及为什么需要随机数nonce。接着介绍了Musig的聚合公钥和签名的实现,包括如何通过多轮通信防止关键取消攻击,确保多个参与者的安全和隐私。
本文介绍了基于ECDSA(椭圆曲线数字签名算法)的适配器签名技术,详细解释了其签名、解密和验证过程,以及如何通过离散对数等价证明(DLEq)来确保签名的有效性。
本文介绍了在闪电网络中使用Schnorr适配签名的方法,以解决当前闪电网络中使用的常见秘密导致的隐私问题和中间节点串通窃取费用的问题。文章详细说明了Alice向Bob支付的过程,以及通过中间节点支付的具体步骤。
本文介绍了适应性签名(Adaptor Signature)的基本理论,包括其在Schnorr签名和ECDSA签名中的应用。文章详细解释了适应性签名的构造、单签名者与双签名者场景下的应用,并探讨了其在不同场景中的实现方式。
本文介绍了在Schnorr签名基础上使用适配器签名进行跨链原子交换的两种方法:使用哈希秘密和使用两方适配器签名。文章通过Alice和Bob的交易示例详细解释了这两种方法的原理和实现过程。
本文讨论了以太坊协议设计中的封装复杂性与系统复杂性之间的权衡。作者阐述了这两种复杂性的定义,并通过多个密码学和经济学的例子(如BLS签名与Schnorr签名、ZK-SNARKs与欺诈证明)探讨了如何在协议设计中做出选择。设计复杂性的减少并不总是单一的解决方案,而是在面对不同复杂性的权衡时需要灵活判断的问题。
比特币中的Schnorr签名, chnorr 签名有许多良好的性质:可证明安全,线性性,批量验证
一种基于区块链的泛用型数据隐私保护的安全多方计算协议