Layer2 的基本概念和主流项目分析
Layer 2(第二层)是指在区块链技术和网络协议中用于扩展基础区块链(Layer 1)的解决方案。其目的是提高交易速度、降低交易费用,并增强网络的可扩展性和效率。Layer 2 通过在主链之外处理大量交易,然后将结果批量提交到主链,从而减轻主链的负担。以下是 Layer 2 的一些关键特点和技术:
Rollups 通过将大量交易打包到一个单一交易中,并将其提交到主链。这种方法可以分为两种类型:乐观 Rollups(Optimistic Rollups)和零知识 Rollups(zk-Rollups)。
但在 l2beat 网站上,除了 rollups 之外,其他的解决方案都全部定义为侧链
目前的 L2 区块链项目中,模块化已然成为标配; 我们都知道,模块化这个词源于Mustafa Albasan 和 Vitalik 在 2018 年共同撰写的,题为《数据可用性采样和欺诈证明》,后经 Celestia 发扬光大。 模块化,可组合落到 Layer2 上是非常合适的,但是在 Layer3 上又是怎样表现的呢,我们如何理解模块化可组合的 Layer3 呢? 模块化能行得通主要源于区块链公链架构的可组合特性,一个成熟的公链包括:
以上各个区块链组件分工明确,各司其职构成了区块链的可信和去中心化特性
数据可用层(Data Availability Layer)是指处理和保证数据可用性的一层。数据可用性是指数据在需要时可以被访问、验证和使用,这对于区块链系统中的数据完整性和安全性至关重要。数据可用层的设计目标是确保所有参与者能够访问和验证区块链上发布的数据,从而保证整个系统的透明性和可靠性。
在分层的区块链架构中,数据可用层通常与其他层(如结算层和执行层)相互配合,以确保整个系统的高效运行。具体来说,数据可用层为结算层和执行层提供了可靠的数据存储和访问服务。
数据可用性证明(Data Availability Proofs )
数据可用性证明是一种方法,用于验证发布的数据是否实际存在且可访问。这些证明对于防止数据可用性攻击(例如,区块发布者声称发布了数据但实际上没有)非常重要。
纠删码(Erasure Coding)
纠删码是一种数据编码技术,用于提高数据存储的冗余性和可靠性。通过将数据分成多个片段并添加冗余信息,即使部分片段丢失或损坏,数据仍然可以恢复。
分布式哈希表(DHT)
DHT是一种分布式存储系统,节点通过哈希函数确定数据的位置,并在网络中存储和检索数据。
密码学技术
加密和哈希算法在确保数据的完整性和安全性方面发挥关键作用。
数据分片(Data Sharding)
数据分片将大数据集分割成更小的片段,并分布在不同的节点上,以提高系统的可扩展性和数据可用性。
以太坊2.0 分片(Ethereum 2.0 Sharding):以太坊2.0采用分片技术,将区块链状态和交易负载分割成多个平行运行的分片链。每个分片链独立处理交易和状态,但通过信标链(Beacon Chain)实现统一的共识和数据可用性。
数据可用层实例
以太坊 2.0:在以太坊 2.0 的分片设计中,信标链和分片链需要协同工作,数据可用层在保证每个分片链数据的可用性方面发挥重要作用。
Celestia:Celestia 专注于构建一个专门的数据可用层,通过分离共识和数据可用性来提高区块链的可扩展性和效率。
EigenDa: 是一种新兴的数据可用性(Data Availability, DA)解决方案,专注于通过创新的技术方法来确保区块链和去中心化应用中的数据可用性。EigenDA 结合了多种先进的密码学和数据分发技术,以实现高效、可靠和可扩展的数据可用性。
中心化存储网络
去中心化存储网络利用分布式存储技术来提高数据的可用性和抗审查性。
跨链通信层(Cross-Chain Communication Layer)是指在不同区块链网络之间实现信息和价值互操作的技术和协议。由于各区块链网络独立运行且通常不兼容,实现跨链通信能够打破区块链之间的隔离,促进去中心化应用(dApps)的互操作性和更广泛的生态系统整合。
互操作性:跨链通信层允许不同区块链之间的数据和资产互操作。这可以包括转移代币、共享数据、调用跨链智能合约等。
信任和安全:确保跨链通信的安全性和信任性是关键。跨链通信层需要防范各种攻击,如双花攻击和中间人攻击,确保跨链操作的安全和完整性。
兼容性:跨链通信层需要支持不同区块链的共识机制和数据结构,确保在异构区块链之间的无缝通信。
中继(Relay):中继是一种桥接机制,通过中继链或中继节点在不同区块链之间传递信息。中继负责监控源链上的事件,并将这些事件提交到目标链上进行处理。例子:Polkadot的中继链(Relay Chain)连接了不同的平行链(Parachains),实现了跨链通信和共享安全。
原子交换(Atomic Swaps):原子交换是一种去信任的跨链交易方式,利用哈希时间锁定合约(HTLC)确保交易双方在不同链上的资产交换同步完成。例子:Bitcoin和Ethereum之间的原子交换可以通过HTLC实现,确保两链之间的代币交换。
侧链(Sidechain):侧链是一种独立的区块链,与主链(主网)平行运行,通过双向锚定(two-way peg)机制实现与主链之间的资产转移和数据通信。例子:Liquid Network作为比特币的侧链,实现了更快的交易和更高的隐私性。
跨链桥(Cross-Chain Bridges):跨链桥是一种专门的协议或平台,通过桥接合约或中继器在不同区块链之间传递资产和信息。例子:ChainBridge 和 RenBridge 是实现不同区块链之间资产跨链转移的桥接工具。
去中心化中继器(Decentralized Relayers):去中心化中继器网络是一种无需信任的跨链解决方案,通过去中心化的节点网络来验证和传递跨链交易。例子:Cosmos的IBC(Inter-Blockchain Communication)协议通过去中心化中继器实现跨链通信。
Polkadot:Polkadot的中继链和平行链架构实现了高效的跨链通信。中继链负责管理和验证平行链之间的跨链交易,确保跨链操作的安全和一致性。
Cosmos:Cosmos通过其IBC协议实现了跨链通信。IBC允许独立的区块链通过标准化协议互操作,节点可以安全地传递消息和资产。
DappLink 跨链互操作协议:一个基于 zkp 的资产,数据跨链互操作协议
Chainlink:Chainlink提供了跨链数据和资产的互操作性解决方案,通过去中心化预言机网络实现链上和链下数据的安全传输。
安全性:跨链通信需要解决各种安全问题,包括双花攻击、重放攻击和中间人攻击。需要设计强大的验证机制和加密协议。
性能和可扩展性:跨链操作可能增加延迟和复杂性,需要优化性能和可扩展性以支持大规模应用。
标准化和互操作性:不同区块链的协议和数据结构各异,需要标准化协议和通用框架来实现互操作性。
以太坊主流的 Layer2 解决方案包括 Optimistic Rollups 和 zk-Rollups。这两种解决方案都旨在提高以太坊网络的吞吐量和降低交易成本,同时保持去中心化的特性和安全性。
Optimistic Rollups 是一种基于承诺链(commit chain)和执行链(execution chain)的 Layer2 扩展方案。它将大量交易数据存储在链外的执行链上,并定期将执行结果提交到链上的承诺链中。通过链外计算和链上争议解决机制,Optimistic Rollups 实现了高性能的智能合约执行,同时保留了以太坊的去中心化特性。
Optimistic Rollups 主流的项目
zk-Rollups 是一种基于零知识证明(Zero-Knowledge Proofs)的 Layer2 扩展方案。它通过将大量交易数据压缩成证明,并在链上发布摘要来实现高吞吐量和低成本的交易。zk-Rollups 提供了更高的隐私保护和交易验证效率,但相对来说实现和部署的技术门槛较高。
Stacks(之前称为Blockstack)是一个构建去中心化应用(dApps)和数字资产的平台,旨在通过区块链技术赋予用户更大的数据控制权和隐私保护。Stacks 提供了一种基于比特币区块链的智能合约平台,使开发者能够构建安全、私密的去中心化应用,并允许用户拥有和控制自己的数据。
Nervos: 基于 RGB++ 协议处理跨链互操作的 Layer2 网络,目前上面无法运行智能合约,这也是 Nervos 未来发展最大的挑战。
如果觉得我的文章对您有用,请随意打赏。你的支持将鼓励我继续创作!