本文介绍了零知识证明(Zero Knowledge Proofs, ZKP)的基本概念和应用,特别是Bulletproofs技术,用于证明某个数值是否在特定范围内。文章详细解释了ZKP的工作原理、协议设计以及数学实现,并通过一个简单的示例说明了如何在不泄露信息的情况下验证陈述的真实性。
本文深入探讨了如何在零知识证明算法中利用随机线性组合来有效地检查多个等式的相等性。通过实例展示了Pedersen承诺的等式验证过程,并提出了一种减少通信开销的方法。这种技术能够实现对多个内积同时进行验证,从而提高效率。
文章详细介绍了如何使用多项式承诺方案在零知识证明中验证多项式乘法的正确性,包括算法步骤和优化方法,并附有代码实现。
本文提出了一种基于RLNC(随机线性网络编码)和Pedersen承诺的以太坊数据可用性(DAS)方案。该方案将原始数据分割成N个向量,使用RLNC进行编码并通过Pedersen承诺进行验证。每个节点只需下载和保管1/S的原始数据,通过节点间交换随机线性组合向量,当满足特定条件时完成数据采样,成为活跃节点。
文章提出了一种基于随机线性网络编码(RLNC)的以太坊区块和blob传播方案,旨在优化P2P网络中的广播和传输效率。通过将区块分割成小块并进行编码,该方案理论上可以在降低带宽消耗和减少网络跳数的同时,实现更快的区块分发。初步的实验数据表明,该方法能够显著提升传播速度,尤其是在处理较大的区块或blob时。
本文提出了一种基于RLNC(随机线性网络编码)的数据可用性采样(DAS)替代方案,该方案结合了RLNC擦除编码和Pedersen承诺。该方案旨在优化以太坊的数据传播,通过减少数据冗余和优化网络结构,降低了带宽需求,并提高了数据可用性的效率。方案中详细探讨了各种设计思路及其优缺点,并提出了未来的研究方向。
探索 Verkle Trie 结构
一种基于区块链的泛用型数据隐私保护的安全多方计算协议