文章
视频
课程
百科图谱
集训营
更多
问答
提问
发表文章
专栏
活动
文档
工作
集市
发现
Toggle navigation
文章
问答
视频
课程
集训营
专栏
活动
工作
文档
集市
搜索
登录/注册
精选
推荐
最新
周榜
关注
RSS
全部
通识
以太坊
比特币
Solana
公链
Solidity
Web3应用
编程语言
安全
密码学
AI
存储
其他
在Python中将R1CS转换为有限域上的二次算术程序(QAP)
in
零知识证明之书
in
零知识证明之书
本文详细介绍了如何将R1CS(Rank 1 Constraint System)转换为QAP(Quadratic Arithmetic Program),并通过Python代码演示了实现过程,包括有限域算术、多项式插值等关键步骤。
RareSkills
发布于 2023-09-19
阅读 ( 675 )
Spartan 预备知识:GKR with ZK Argument
Thanks感谢SecbitLabs@郭宇前两个月分享的SpartanOverview(尽管当时也没太理解),以及@even在研究方向上的指引(据说Hyrax不太好啃),不至于走太多弯路。我的动机缘于folding,缘于NOVA,缘于Setty,了解到了Spartan,
GKR
Hyrax
Spartan
白菜
发布于 2023-09-17
阅读 ( 6628 )
( 11 )
Lookup奇点降临:Lasso 和 Jolt 简介
本系列中,我们将分享两项崭新的工作:Lasso 和 Jolt,它们可以显著加速 web3 中应用的扩展和构造。它们共同代表了一种本质上全新的 SNARK 设计方法,可将已广泛部署的工具链的性能提升一个数量级或更多;提供更好、更方便的开发者体验;并使得审计变得更加容易。
zkSNARK
Lasso
Jolt
Lookup
XPTY
发布于 2023-09-14
阅读 ( 3934 )
秘密,以及如何证明它们:魔法师的零知识证明指南
本文通过将零知识证明(ZKP)与魔术表演相类比,深入探讨了ZKP在web3中的重要性,尤其是在隐私和可扩展性方面的应用。文章清晰地解释了zk-SNARK的定义及其属性,并通过通俗易懂的例子帮助读者理解这一复杂概念。
零知识证明
zk-SNARK
隐私
可扩展性
区块链
加密技术
a16z Crypto
发布于 2023-09-10
阅读 ( 633 )
密码学 - 暸解 Plonk
本文深入浅出地介绍了Plonk证明系统,通过毕氏定理的例子,逐步拆解Plonk的限制式,并解释了相等限制式的概念。文章还对比了Plonk与Groth16在电路结构和约束方式上的差异,解释了Plonk中如何通过自定义逻辑门提高电路的灵活性,并对Plonk的核心概念进行了总结。适合对零知识证明和SNARKs有一定基础的读者阅读。
PLONK
SNARKs
零知识证明
多项式承诺
可信任设置
约束
EthTaipei
发布于 2023-09-06
阅读 ( 318 )
【上篇】ProtoStar from scratch
Thanks十分感谢@AntalphaLabs上月底提供的线下hackerhouse,有机会亲历并学习SecbitLabs@郭宇老师、@even做zkresearch的思路和方法,并讨论了很多foldingscheme相关的问题非常感谢参加hackerhouse一起交流
folding
Nova
protostar
白菜
发布于 2023-09-06
阅读 ( 3588 )
( 6 )
Groth16 详解
in
零知识证明之书
in
零知识证明之书
本文详细介绍了Groth16零知识证明算法的原理、实现及其应用,包括可信设置、证明生成和验证的步骤,并讨论了防止伪造证明的方法以及算法中的安全问题。
Groth16
零知识证明
椭圆曲线
可信设置
验证算法
RareSkills
发布于 2023-09-02
阅读 ( 3115 )
( 2 )
在可信设置中评估和二次算术程序
in
零知识证明之书
in
零知识证明之书
本文详细介绍了如何在可信设置的基础上评估二次算术程序(QAP),并解释了如何在不泄露证据的情况下证明QAP的满足性,使用恒定大小的证明。同时还涉及了R1CS、椭圆曲线配对等技术的详细实现。
QAP
R1CS
椭圆曲线配对
可信设置
Groth16协议
RareSkills
发布于 2023-08-30
阅读 ( 1352 )
零知识证明 - 说说Nova
Nova算法是一种针对IVC(增量可验证计算,Incrementally Verifiable Computation)的新型的零知识证明算法。
零知识证明
Nova
IVC
Star Li
发布于 2023-08-28
阅读 ( 3518 )
CycleFold Based Nova
背景下面这张图是revisitingnova中非常经典的描述cyclecurves的图:通过上面这张图,我们可以有以下共识:我们通常称上面一层电路为primary电路,下面一层电路为secondary电路。以secondary电路为例,secondary电路需要把prima
零知识证明
Nova
白菜
发布于 2023-08-27
阅读 ( 3901 )
( 4 )
二次算术程序
in
零知识证明之书
in
零知识证明之书
文章详细介绍了二次算术程序(QAP)的概念及其在零知识证明中的应用,特别是如何通过拉格朗日插值将Rank 1约束系统(R1CS)转换为QAP,并通过Schwartz-Zippel引理在O(1)时间内验证QAP的等式。
QAP
R1CS
拉格朗日插值
Schwartz-Zippel引理
零知识证明
有限域
RareSkills
发布于 2023-08-25
阅读 ( 850 )
NOVA from scratch
写在前面的时隔两个多月终于有机会给NOVAresearch做个了结,期间一直没有机会读revisitingnova,认真读完之后感触比较深,写点儿东西记录下来,也算给自己之前的research一个交待。当然期间也不乏出现hypernova/protostar这些可能更接近“真实战场”的
Nova
folding
zkSNARK
白菜
发布于 2023-08-21
阅读 ( 4613 )
( 19 )
如何从零开始编写FRI代码
本文深入探讨了FRI(快速Reed-Solomon交互式Oracle证明)协议,该协议用于证明某个函数接近于低阶多项式,这在构建STARKs等证明系统中非常有用。文章详细解释了FRI协议的原理、实现过程,包括多项式的随机折叠、使用Merkle树进行承诺,以及验证过程,并讨论了该协议的安全性依赖于有限域的大小、哈希函数的安全性以及查询的数量。
FRI
STARKs
Reed-Solomon
Merkle树
密码学证明
零知识证明
lambdaclass
发布于 2023-08-19
阅读 ( 748 )
介绍 Lasso 和 Jolt
本文介绍了两项新技术——Lasso和Jolt,它们通过改善SNARK设计,提高了开发者体验和审计能力,显著提升了计算性能。Lasso通过承诺更少更小的值来降低证明成本,而Jolt则为zkVMs提供了一种新框架,从而推动Web3应用的构建与扩展。
Lasso
Jolt
SNARK
zkVM
区块链
加密
a16z Crypto
发布于 2023-08-11
阅读 ( 1280 )
从理论到代码理解Lasso和Jolt
本文介绍了两项新技术——Lasso和Jolt,它们为SNARK设计带来了根本性的新方法,显著提升了性能并改善了开发者体验。Lasso提供了更快的查找论证,支持大型表格的高效查找,而Jolt则为零知识虚拟机(zkVM)设计带来了简化,使开发者可以更容易地编写高效的SNARK应用。
Lasso
Jolt
SNARK
zkVM
区块链
可验证计算
a16z Crypto
发布于 2023-08-11
阅读 ( 1232 )
【Plonk SNARK】Plonk IOP协议
本系列专题将基于@郭宇老师的视频、讲义及相关论文,系统梳理一下PlonkSNARK的各个组件,尽量做到代码级地剖析深度。预期将涵盖以下几个章节:PlonkIOP协议实现zerokownledge实现Non-Interactivelookup特性Thanks感谢@郭宇老师
PLONK
零知识证明
zkSNARK
白菜
发布于 2023-08-07
阅读 ( 3461 )
( 2 )
KZG10 与 Pairing
通过一天的交流学习大概弄清了KZG10与Pairing的勾迹关系,对PCS也有了更进一步认识,这里记录一下它们之间的逻辑关系。Thanks感谢@KurtPan博和@miles的热心交流讨论,让我重新认识了“椭圆曲线group上的标量乘法”与“椭圆曲线group上的元素乘法
零知识证明
椭圆曲线
白菜
发布于 2023-08-03
阅读 ( 2304 )
( 11 )
BLS12-381指南
开始鼓捣之前,我希望我知道的。 近年来,椭圆曲线BLS12-381逐渐火了起来。许多协议都将其应用到了数字签名和零知识证明中:Zcash、Ethereum 2.0、Skale、Algorand、Dfinity、Chia 等等。 不幸的是,现有的关于 BLS12-381 的资料里充满着晦涩的咒语,比如
bls12-381
椭圆曲线
BLS签名
XPTY
发布于 2023-07-28
阅读 ( 5365 )
基于UTXO生态系统的Perun通道
文章详细介绍了Perun通道框架在UTXO生态系统中的应用,强调了其在提升区块链可扩展性、降低交易成本和增强隐私方面的潜力。通过与其它扩展解决方案的比较,展示了Perun通道在UTXO区块链中的独特优势。
Perun
UTXO
区块链
可扩展性
隐私
交易成本
perun.editor
发布于 2023-07-26
阅读 ( 437 )
数学血脉:伦斯特拉家族
本文介绍了Lenstra家族在数学和计算机科学领域的卓越贡献,重点介绍了 Jan Karel Lenstra 在互联网路由方面的贡献,Arjen Lenstra 在密码学方面的研究,以及 Hendrik W. Lenstra Jr. 在椭圆曲线分解方面的成就。此外,还提到了Lenstra家族在RSA算法破解和LLL算法上的贡献。文章还概述了其他用于整数分解的方法。
Lenstra
LLL算法
RSA
椭圆曲线
整数分解
密码学
asecuritysite
发布于 2023-07-25
阅读 ( 216 )
‹
1
2
...
19
20
21
22
23
24
25
...
37
38
›
发表文章
我要提问
扫一扫 - 使用登链小程序
热门文档
»
Solidity 中文文档 - 合约开发
Foundry 中文文档 - 开发框架
Hardhat 中文文档 - 开发框架
ethers.js 中文文档 - 与链交互
Viem 中文文档 - 与链交互
web3.js 中文文档 - 与链交互
Anchor 中文文档 - 开发框架
以太坊改进提案EIP翻译
以太坊域名服务(ENS)文档
Etherscan API 手册 - 查询链上数据
热门百科
»
有限域
多方计算
Raydium
身份验证
离线签名
错误处理
PLONK
Makerdao
MPC
EIP1559
Metaplex
Node.js
EIP4844
数据存储
DID
BitVM
ZK-Rollup
Libra
Blob
跨链通信
AO
TFHE-rs
钓鱼攻击
mempool
Groth16
30天文章收益榜
»
寻月隐君
210 篇文章,840 学分
CoinsBench
67 篇文章,704 学分
Helius
136 篇文章,605 学分
QuickNode
413 篇文章,527 学分
4pillars
170 篇文章,398 学分
×
发送私信
请将文档链接发给晓娜,我们会尽快安排上架,感谢您的推荐!
发给:
内容: