简单分析全同态加密(FHE,FuIyHomomorphicEncryption)技术如何运作。
Jolt:一个快速、易于使用的 zkVM
椭圆曲线密码学的应用:密钥交换与信息签名
椭圆曲线密码学 入门篇: 实数上的椭圆曲线和群定律
什么是 Schnorr 签名, Schnorr 签名的优势: 密钥和签名聚合, 批量验证
介绍全同态加密(FHE):探索其令人兴奋的应用、局限性和最近推动其流行的发展。
深入探讨了 fhEVMs 如何利用全同态加密来增强 EVM 兼容区块链中的隐私性。
密码学原理比特币中主要用到了密码学中的两个功能:哈希和签名。哈希密码学中的哈希称为Cryptographichashfunction,具有三个性质:collisionresistance(哈希碰撞)和Hiding、puzzlefriendly比特币中用的哈希函数是:SHA-256,即
FHE全同态加密介绍——小白版
一直对zkVM比较感兴趣。zkVM将零知识证明技术应用带入一个新的时代。几年前,应用零知识证明技术需要理解复杂的零知识证明算法,并且需要将证明业务逻辑描述成“电路”。zkVM将这些复杂的逻辑封装。基于zkVM,业务开发人员可以采用熟悉的高级语言轻松完成证明业务的描述。目前市面上zkVM层出不穷。先看
使用 Risc0 创建你的第一个 ZK 项目
zkVM 1.0 为构建链上协议和去中心化应用引入了新的范式。它解锁了可验证的链下计算,允许协议无缝扩展计算,并使开发者能够创建更复杂和高效的 dApp。
Validium也是一个以太坊的Layer2的扩容方案,它主要是在链下处理交易、链下保证数据可用性(链下存储数据)、同时生成零知识证明对交易有效性进行确认。
在零知识证明系统中,我们(几乎)总是在有限域上进行操作,并且由于证明者通常必须进行大量的域操作来生成证明,因此我们自然希望我们的域操作要尽可能快。如果使用椭圆曲线密码学,我们被限制在“密码学大小”的域,比如大约 256 位可实现 128 位安全性。然而,类 STARK 的技术(里德-所罗门IOP)在
本书签内容整理自紫樱 的资源,非常感谢紫樱大佬的分享。我在上面进行整理添加。
Binius是个新颖的零知识证明系统,目的是降低证明者的计算开销。Binius能降低证明开销的原因是使用了$F_2$以及扩展域。
verify pairings on bitcoin
Pairings, KZG, SNARK
关于陈算法的再更新
陈一镭 (Yilei Chen) 撰写的e-print论文《格问题的量子算法》,引起了密码学学术界的轰动。
扫一扫 - 使用登链小程序
37 篇文章,357 学分
61 篇文章,328 学分
108 篇文章,260 学分
22 篇文章,219 学分
9 篇文章,155 学分