文章探讨了L2IV与Polyhedra在比特币上进行ZK证明验证的合作,分析了比特币脚本与以太坊智能合约的异同,并提出了恢复OP_CAT操作码以提高比特币ZK验证器效率的建议。文章详细讨论了Merkle树证明验证与有限域算术的适用性,并强调了ZK验证器对Polyhedra未来应用的重要性。
本文介绍了Circom代码与其编译成的Rank 1 Constraint System (R1CS)之间的关系,并通过几个例子详细解释了如何在Circom中编写约束,以及如何使用Circom命令行工具编译电路、生成witness,并验证电路的正确性。文章还介绍了zkRepl在线IDE的使用,以及Circom中有限域的概念,以及如何将snarkjs导出的R1CS约束转换为Circom中的原始约束。
本文详细介绍了 Binius 方法在 binary field 中构建 SNARK 的过程,包括其背后的数学理论如 Polynomial Commitment Scheme、Reed-Solomon 纠错码和 Kronecker 乘积等。通过对这些理论的解释,展示了如何通过 Binius 方法高效进行多变量多项式的运算,以及其在具体案例中的应用,有助于理解其在减少计算资源和提高效率方面的贡献。
本文介绍了椭圆曲线在密码学中的应用,解释了椭圆曲线如何通过特定的群操作(如弦切线规则)形成密码学所需的数学结构。文章详细讨论了椭圆曲线群的定义、有限域上的点运算、群单位元的引入以及点加倍操作,并指出这些数学结构为加密和数字签名提供了难以破解的难题基础。
本文详细介绍了高级密码学中的基本概念,包括群、有限域、椭圆曲线和配对。这些概念在设计和实现数字签名方案、多方计算(MPC)和零知识证明(ZKP)等高级协议中起着核心作用。文章通过数学定义、属性和示例,帮助读者深入理解这些密码学原语。
文章介绍了Binius,一种在二进制域上高效生成证明的系统,详细解释了其技术原理、实现方法及其相较于SNARKs和STARKs的优势。
本文详细介绍了快速傅里叶变换(FFT)的原理及其在多项式乘法和多点评估中的应用,特别是在有限域中的实现。文章还提供了相关的代码示例,展示了FFT在计算中的高效性。