文章详细介绍了二次算术程序(QAP)的概念及其在零知识证明中的应用,特别是如何通过拉格朗日插值将Rank 1约束系统(R1CS)转换为QAP,并通过Schwartz-Zippel引理在O(1)时间内验证QAP的等式。
本文详细介绍了有限域在零知识证明电路中的应用,包括有限域的定义、模运算、加法逆元、乘法逆元等概念,并通过代码示例展示了如何在Python中实现这些操作。
文章详细介绍了有限域上的椭圆曲线,包括它们的绘制、数学性质以及在密码学中的应用。通过多个示例和代码,展示了如何生成和操作这些曲线,并解释了其与有限域的循环群特性。
本文深入探讨了椭圆曲线在密码学中的应用,解释了椭圆曲线实际上是一个群,并且详细介绍了群的定义、操作及其在密码学中的重要性。文章还讨论了离散对数问题(DLP)及其在椭圆曲线群中的应用,以及如何选择适合密码学的椭圆曲线。
本文深入探讨了椭圆曲线密码学中椭圆曲线的定义和操作,特别是如何通过有限域和模运算在离散环境中进行点加和倍点操作,并介绍了射影坐标系的优势。
本文介绍了算术电路的概念及其作为通用计算模型的作用,探讨了如何利用算术电路验证问题的解决方案,并提到其在零知识证明中的应用。文章还提到算术电路可以分解为其构建模块(门),便于验证计算过程。
《The RareSkills Book of Zero Knowledge》是一本面向程序员的零知识证明教程,内容涵盖从基础数学到实际编码实现,旨在帮助程序员深入理解零知识证明,尤其是Groth16算法。
本文深入探讨了椭圆曲线双线性配对的概念,涵盖了相关理论、实现步骤及高级优化。文章首先介绍了有限域和扩展域的基础知识,随后详细说明了椭圆曲线及其在双线性配对中的应用,并分析了计算中的复杂性与优化方法,文末还提供了学习资源。整体上,内容具有较高的深度和逻辑性,为想深入了解椭圆曲线密码学的读者提供了良好的基础。
文章详细介绍了Schwartz-Zippel Lemma在零知识证明(ZK-Proof)中的应用,通过多项式例子和Python代码展示了如何利用该引理进行多项式相等性测试和向量相等性测试。
这篇文章深入探讨了环论的基本概念,包括环、交换环、余数环和多项式环的定义和性质。作者详细阐述了抽象代数在加密学中的应用,特别是在复杂数域和有限域(Galois域)的背景下,展现了多项式环和环同态的相关知识,并通过代码示例展示了相关概念的实际应用。
文章详细介绍了如何使用多项式承诺方案在零知识证明中验证多项式乘法的正确性,包括算法步骤和优化方法,并附有代码实现。
介绍了拉格朗日插值法,通过一组点计算一个经过这些点的多项式,并提供了Python代码示例。
本文通过多个例子详细解释了同态映射的概念,并探讨了其在加密技术和零知识证明中的应用。文章结构清晰,分为简单和复杂例子两部分,并附有详细的数学公式和Python代码示例。
本文介绍了椭圆曲线在密码学中的应用,解释了椭圆曲线如何通过特定的群操作(如弦切线规则)形成密码学所需的数学结构。文章详细讨论了椭圆曲线群的定义、有限域上的点运算、群单位元的引入以及点加倍操作,并指出这些数学结构为加密和数字签名提供了难以破解的难题基础。
本文详细介绍了高级密码学中的基本概念,包括群、有限域、椭圆曲线和配对。这些概念在设计和实现数字签名方案、多方计算(MPC)和零知识证明(ZKP)等高级协议中起着核心作用。文章通过数学定义、属性和示例,帮助读者深入理解这些密码学原语。