本文介绍了加密学中的配对(pairings),首先定义了其概念及其在椭圆曲线中的应用,接着阐述了配对的双线性特性及其在身份基础加密中的重要性。配对不仅是一个数学操作,还因其在加密通信中通过身份生成私钥而显得极为强大。
本文详细介绍了椭圆曲线配对(Elliptic Curve Pairings)的基本概念、数学原理及其在密码学中的应用,包括确定性阈值签名、zk-SNARKs等。文章涵盖了椭圆曲线的数学背景、配对的双线性性质及其实现细节,适合对密码学有深入了解的读者。