几种通用的zk-SNARKs 实现的比较
DIZK源代码导读
DIZK,Distributed Zero Knowledge,分布式的零知识证明系统。在分布式环境下,DIZK能支持超大规模电路(10亿门级别)的计算。
作为本系列的最后一篇文章,本文继续对 zk-SNARK 协议进行完善,最终形成一个完整的 zk-SNARK 协议
上一篇文章中我们学习了如何将程序转换为多项式进行证明。到这里似乎已经有点晕了,本文将对协议执行进一步的约束,并对协议展开优化。
前文主要介绍了如何构造多项式的零知识证明协议,现在将开始探讨如何构造更通用的协议。本节主要是讲如何将一组计算的证明转换为多项式进行证明。本文重点主要包括:多项式的算术性质,多项式插值等。
有限域上的椭圆曲线是零知识证明的基础。零知识的实现是基于离散对数问题。从计算的角度来看,F_p是个有限域,在之基础上建立的椭圆曲线点的运算都是在这个域范围内。有限域上的椭圆曲线上有很多循环子群F_r,具有加法同态的特性。离散对数问题指的是,在循环子群上已知两点,却很难知道两点的标量。
相信看完前一篇文章的朋友们会有一点很不解的地方:为什么我们可以如此简短的创建一个证明,并且证明很长的信息呢?在上课前我也有这同样的疑惑,甚至觉得这个是一个“黑科技”,不过相信大家看完这篇文章,就会知道如何去驾驭这个“黑科技”了。
探索零知识证明系列(五)
上一篇文章(多项式的性质与证明)中,作者介绍了如何利用多项式的性质来证明某个多项式的知识,相信大家已经对构造证明有了一些基本的认识。目前的证明协议仍然存在一些缺陷,本文将会针对这些薄弱项进行改进,进而最终构造出关于多项式的零知识证明协议。本文重点:KEA,交互式零知识证明,非交互式零知识证明和 Setup。
希望通过本系列文章,所有开发者都能亲自上手实践,在短时间内迅速入门 libsnark,一步步了解 libsnark 的基本概念.
偶然一次机会,看到了 Maksym Petkus 的这篇文章。文章从最基本的多项式性质讲起,从一个简单易懂的证明协议开始,然后像堆积木一样在发现问题,修改问题中逐步去完善协议,直到最终构造出完整的 zk-SNARK 协议。于是想把它翻译出来(已获得作者授权),一方面加深自己的学习,另一方面也将这份宝藏分享给小伙伴们。
本文介绍零知识证明的背景和起源,阅读后大家对为什么需要零知识证明,和零知识证明到底有多强大,有了一个更加深入的了解。
Groth16算法是zkSNARK的典型算法,目前在ZCash,Filecoin,Coda等项目中使用。本文从计算量的角度详细分析Groth16计算。Groth16计算分成三个部分:Setup针对电路生成Pk/Vk(证明/验证密钥),Prove在给定witness/statement的情况下生成证明,Verify通过Vk验证证明是否正确。
上一篇我们梳理了一下混币的基本原理,在这一篇中我们开始动手实现一个混币。
混币的目的是切断加密货币交易中发送方与接受方的联系,提高加密货币的隐私性和匿名性,使第三方更难追踪加密货币的用途以及它属于谁。
谈到ZKP算法,大伙可能听过一些,比如zk-snark,zk-stark, bulletproof, aztec, plonk等等。今天,咱就给大伙聊聊这一对“表面兄弟”,zk-stark和zk-snark算法的异同之处。
玩过zkSNARK的小伙伴都知道,R1CS是目前描述电路的一种语言。目前实现zkSNARK电路的框架有libsnark(C++),bellman (Rust),ZoKrates(DSL),Circom(js)等等。有的时候,需要将一个框架中生成的电路,导入其他框架。网络上研究了一下,发现两个有意思的项目。
交易隐私是零知识证明的一个应用方向。除了通过公链或者侧链实现交易的发送方/接收方以及金额隐藏外,Mixer,江湖人称“混币”,是在已有公链上实现交易的发送方的隐藏(匿名)。Mixer,就是将一些账户的资金“混”在一起,由公开的第三方代替发送方发起转账。这个第三方,被称为Mixer或者Relayer。本文分析以太坊上的三个Mixer项目的设计和性能。
Semaphore是一个用零知识证明(zk-SNARK)技术的开源项目。Semaphore实现的是基于零知识证明的身份和信号。
扫一扫 - 使用登链小程序
41 篇文章,405 学分
74 篇文章,295 学分
30 篇文章,252 学分
158 篇文章,161 学分
11 篇文章,160 学分