本文将构建一个zk-dApp(零知识证明 DApp),以证明用户是否属于某个特定组,而无需透露用户具体是谁。
本节主要介绍了RSA算法加解密过程及原理,RSA还有很多相关内容,包括签名,具体运算过程,背景知识,安全性等。后续几篇将分别介绍,以求知识系统的完备性。
费马小定理是初等数论四大定理(威尔逊定理,欧拉定理(数论中的欧拉定理),中国剩余定理(又称孙子定理),费马小定理)之一,其他定理如欧拉定理,之前文章也提过,后续会抽时间单独介绍。关于费马小定理的应用,在求解模逆运算的时候第一种方法便是使用费马小定理求解,还可应用在快速幂模运算等。
本教程是circom 和 snarkjs 最经典的入门文章
本文介绍了ElGamal算法。其中过程又提到了费马小定理等。
并不是所有a,m 都存在模逆元,只有当a与m互质才有乘法模逆元存在。
本节将总结下模运算的运算规则。更好地理解之前文章中一些推导过程。
本节介绍离散域上椭圆曲线进行迪菲赫尔曼密钥交换,并加以实例说明
本节继续介绍离散域上椭圆曲线进行签名和验证过程,并加以实例说明。
本节将介绍如何使用离散域上椭圆曲线进行加密和解密过程。若果觉得阅读理解本文有困难,可以先参考之前的一些铺垫的历史文章。以后所说的椭圆曲线默认都是指离散域上模素数的椭圆曲线。
本节介绍如何让椭圆曲线点的坐标离散化。
本节主要说涉及到数论的一些知识和椭圆曲线上加法运算。
本节主要说椭圆曲线的背景及基本性质。
本节主要讲欧几里得算法及其扩展算法。
密码学很神秘?很高端?本文是密码学系列的第一篇:概述。带你一起来揭秘! 根据密钥的类型一般可以分为对称加密和非对称加密
19年底360安全发布的一篇有关零知识证明安全的文章。这篇文章是Zhiniang Peng在PacSec2019大会发言的总结。文章框架性地介绍零知识证明zk-SNARK的知识,并给出了一些安全提示和思考。
本文详细说明了路印协议在zkSNARK证明生成上的一些优化措施,我们成功地将生成零知识证明的成本降低为每笔交易仅0.03分RMB(100万笔交易成本大约300RMB),与目前我们线上的版本相比,成本降低了15倍。再加上其他一些优化手段,最终路印协议每笔撮合交易总成本仅仅只需0.09分RMB(100万笔交易成本大约900RMB)。
不知不觉,写了不少零知识证明相关的文章,单独总结成列表。方便对零知识证明感兴趣的小伙伴,学习开发。零知识证明,乃至区块链技术,需要学习,深入研究的东西太多太多了。零知识证明学习入门...
libsnark库代码层次非常清晰。libsnark也给出了SNARK相关算法的全貌,各种Relation,Language,Proof System。为了更好的生成R1CS电路,libsnark抽象出protoboard和gadget,方便开发者快速搭建...
理解为什么以及如何基于多项式构造零知识证明,这篇文章讲的比较清楚。虽然文章只讲到了皮诺曹协议,但是足够理解基于多项式构造零知识证明的本质。想深入零知识证明的小伙伴都建议看看。
ht...
扫一扫 - 使用登链小程序
41 篇文章,405 学分
74 篇文章,295 学分
30 篇文章,252 学分
158 篇文章,161 学分
11 篇文章,160 学分