文章
视频
课程
百科图谱
集训营
更多
问答
提问
发表文章
专栏
活动
文档
工作
集市
发现
Toggle navigation
文章
问答
视频
课程
集训营
专栏
活动
工作
文档
集市
搜索
登录/注册
精选
推荐
最新
周榜
关注
RSS
全部
通识
以太坊
比特币
Solana
公链
Solidity
Web3应用
编程语言
安全
密码学
AI
存储
其他
区块链中的数学 - 参与者 < 门限值t的密钥更新Amir Herzberg方案
本文介绍参与者少于门限值t时的方案,实质上是通过提高c的值来改变门限值。 需要说明的是后m个节点虽然也参与计算了,但不是和前k节点一样(生成秘密随机数,计算准备多项式),属于被动参与,不会影响最终结果。
区块链中的数学
blocksight
发布于 2020-12-06
阅读 ( 5051 )
( 2 )
区块链中的数学 - Amir Herzberg动态密钥共享
动态秘密共享方案可有效提高长周期密钥的安全性。本文介绍了典型的Amir Herzberg实现方案,默认情况下所有参与者都参与,恢复阶段只要大于或等于门限t个参与能够周期性地更新自己的密钥部分,就能达到目的,本质上是 **n 个参与者协商了一个常数项为零的 t-1 次多项式!**
区块链中的数学
密钥分享
blocksight
发布于 2020-11-29
阅读 ( 6511 )
( 15 )
区块链中的数学 - Feldman的可验证的密钥分享
Feldman的方案提供了可验证的密钥分享机制,验证子密钥的正确性的关键是密钥分发者公布了承诺信息$(c_i)$,$c_i$ 绑定了多项式系数,从而使得每个参与者收到的承诺都来自同一个多项式
区块链中的数学
密钥分享
blocksight
发布于 2020-11-24
阅读 ( 12173 )
( 23 )
区块链中的数学 - Shamir密钥分享
密钥分享技术本质上是单一密钥的拆分管理,使用n份冗余储存,保证m份分片确定的秘密。这个秘密可以是私钥,也可以扩展成其他任意信息,如资产共同管理,谜语答案,秘密遗嘱等。
区块链中的数学
多签
密钥分享
blocksight
发布于 2020-11-20
阅读 ( 9237 )
( 18 )
区块链中的数学 - 比特币使用的多签方式
本文介绍了比特币使用的多签方式,多钱类型地址 + 交易多个签名。但是如果参与者较多的话,签名数据就会倍增,占用很多存储空间,而Schnorr聚合签名则解决了这个问题,无论多少参与者,最后聚合成一个签名,跟普通的签名无样。
区块链中的数学
多签
比特币
blocksight
发布于 2020-11-15
阅读 ( 8080 )
( 14 )
区块链中的数学 - 随机数和伪签名
随机数在密码学体制中,占据重要的位置,如果不正确使用会带来非常大的安全隐患,历史上发生此类事故也不在少数。伪签名是一个弱问题,可能会对不熟悉的人造成欺骗。
区块链中的数学
随机数
伪签名
blocksight
发布于 2020-11-13
阅读 ( 6593 )
( 7 )
区块链中的数学 - EdDSA签名机制
本文主要说了EdDSA签名机制的发展及其优点
区块链中的数学
blocksight
发布于 2020-11-09
阅读 ( 11592 )
( 59 )
区块链中的数学 - Ed25519签名机制
Ed25519使用了扭曲爱德华曲线,签名过程和之前介绍过的Schnorr,secp256k1, sm2都不一样,最大的区别在于没有使用随机数,这样产生的签名结果是确定性的,即每次对同一消息签名结果相同。
区块链中的数学
椭圆曲线
签名
Ed25519
blocksight
发布于 2020-11-02
阅读 ( 15465 )
( 42 )
区块链中的数学-蒙哥马利曲线和应用实例Curve25519
本文介绍了蒙哥马利曲线和应用实例Curve25519,Curve25519得到广泛使用,其自身的长处简单说明,没有展开
区块链中的数学
椭圆曲线
blocksight
发布于 2020-10-28
阅读 ( 12026 )
( 31 )
区块链中的数学-爱德华曲线运算的几何意义
本文介绍了爱德华曲线运算的几何意义,引入了扭曲爱德华曲线。
区块链中的数学
椭圆曲线
blocksight
发布于 2020-10-24
阅读 ( 10280 )
( 51 )
区块链中的数学 - 爱德华曲线方程
本文简要概述了爱德华曲线方程和有限域K上点运算,在参数d不是k平方的情况下,是完备的,即没有异常点以及相同点操作也是一致的(对比之前的椭圆曲线点加法规则(有无穷远点,相同点操作异与不同点),这样的性质可以增强对侧信道攻击(side channel attack)的抵御能力,同时点乘的效率也更高!
区块链中的数学
椭圆曲线
blocksight
发布于 2020-10-21
阅读 ( 8823 )
( 21 )
区块链中的数学 - sm2恢复公钥问题
本文原计划要讲椭圆曲线中的爱德华曲线,鉴于很多朋友咨询sm2的问题,所以把sm2恢复公钥问题详细说一下,原理跟secp256k1曲线一样,没有什么新的内容,只是细节的变化。
区块链中的数学
SM2算法
blocksight
发布于 2020-10-17
阅读 ( 6306 )
( 39 )
区块链中的数学-VRF基于ECC公钥体制的证明验证过程
本文主要介绍了VRF基于ECC公钥体制的证明验证过程, 基于前一文的基础,本篇顺理成章地说明了验证的内在逻辑,别的地方很难有这样的内在分析!
区块链中的数学
VRF
椭圆曲线
blocksight
发布于 2020-10-13
阅读 ( 6194 )
( 15 )
区块链中的数学 - VRF基于ECC公钥体制的证明生成过程
本文主要介绍了VRF基于ECC公钥体制的证明生成过程, 其中涉及多个辅助方法,这些方法只是做了简要的介绍,因为详细说明每个方法会有很多内容,先搞清楚主要过程,后续有时间再细说。
区块链中的数学
VRF
blocksight
发布于 2020-10-07
阅读 ( 5510 )
( 22 )
区块链中的数学-VRF基于RSA公钥体制的实现
本文主要介绍了VRF基于RSA公钥体制的实现,如果对RSA原理比较熟悉,那么就比较容易理解了。其中掩码生成函数在密码学中应用较多,后续还有可能提到。
区块链中的数学
VRF
blocksight
发布于 2020-10-05
阅读 ( 6107 )
( 25 )
区块链中的数学 - 随机可验证函数(VRF)
本文主要介绍了VRF的概念和算法结构,随机性体现在外部看来,找不到输出证明结果与输入之间的关系,给人一种“随机性”输出的感觉。
区块链中的数学
VRF
blocksight
发布于 2020-10-02
阅读 ( 11092 )
( 70 )
区块链中的数学-uniswap 中交易的几种情况算法流程
罗列了交易的几种情况算法流程
区块链中的数学
Uniswap
交易
blocksight
发布于 2020-09-29
阅读 ( 8834 )
( 167 )
格密码学进阶之四:更高效率的IBE(ABB10)
斯坦福学霸笔记之格密码学进阶(四)
密码学
Lattice
安比实验室
发布于 2020-09-28
阅读 ( 7035 )
( 28 )
格密码学进阶之三:基于格的Identity-based Encryption(身份加密)
斯坦福学霸笔记之格密码学进阶(三)
Lattice
密码学
安比实验室
发布于 2020-09-28
阅读 ( 7202 )
( 23 )
格密码学进阶之二:Lattice Trapdoors Cont'd(格中陷门下篇)
斯坦福学霸笔记之格密码学进阶(二)
密码学
Lattice
安比实验室
发布于 2020-09-28
阅读 ( 6198 )
( 19 )
‹
1
2
3
4
5
6
›
发表文章
我要提问
扫一扫 - 使用登链小程序
热门文档
»
Solidity 中文文档 - 合约开发
Foundry 中文文档 - 开发框架
Hardhat 中文文档 - 开发框架
ethers.js 中文文档 - 与链交互
Viem 中文文档 - 与链交互
web3.js 中文文档 - 与链交互
Anchor 中文文档 - 开发框架
以太坊改进提案EIP翻译
以太坊域名服务(ENS)文档
Etherscan API 手册 - 查询链上数据
热门百科
»
DVM
地址格式
治理提案
强化学习
抵押债务头寸
DAO 治理
学习笔记
隐私增强
DappLink
Associated Token Account
Liquid Network
Shamir私钥分割
哈希率
brownie
双向支付通道
LaBRADOR
盲化合并挖矿
Succinct
Bera
HONEY
Address Lookup Tables
健康因子
bug修复
chaincode
历史过期
30天文章收益榜
»
Henry
124 篇文章,855 学分
Tiny熊
196 篇文章,790 学分
寻月隐君
315 篇文章,330 学分
thogiti
76 篇文章,302 学分
Galaxy
86 篇文章,300 学分
×
发送私信
请将文档链接发给晓娜,我们会尽快安排上架,感谢您的推荐!
发给:
内容: