通过一天的交流学习大概弄清了KZG10与Pairing的勾迹关系,对PCS也有了更进一步认识,这里记录一下它们之间的逻辑关系。Thanks感谢@KurtPan博和@miles的热心交流讨论,让我重新认识了“椭圆曲线group上的标量乘法”与“椭圆曲线group上的元素乘法
本节介绍如何让椭圆曲线点的坐标离散化。
本文详细介绍了Groth16零知识证明算法的原理、实现及其应用,包括可信设置、证明生成和验证的步骤,并讨论了防止伪造证明的方法以及算法中的安全问题。
本节主要说椭圆曲线的背景及基本性质。
本节将介绍如何使用离散域上椭圆曲线进行加密和解密过程。若果觉得阅读理解本文有困难,可以先参考之前的一些铺垫的历史文章。以后所说的椭圆曲线默认都是指离散域上模素数的椭圆曲线。
这篇文章详细介绍了椭圆曲线及其在现代加密中的应用,尤其是椭圆曲线密码学(ECC)。文章涵盖了椭圆曲线的基本概念、算术运算、在SageMath中的实现以及ECC在通信安全、数字签名和密钥交换中的应用。通过丰富的代码示例和可视化图表,读者可以深入理解椭圆曲线加密的理论基础和实践应用。
本节继续介绍离散域上椭圆曲线进行签名和验证过程,并加以实例说明。
本文深入探讨了椭圆曲线上的函数与映射,包括群的同态、同构、扭曲及其在密码学中的应用。作者解释了如何通过这些概念构建更复杂的算法,以及它们在有限域上的数学特性和意义。文章结构清晰,逻辑严谨,为读者提供了深入的技术理解。
BLS12-381 是一种被广泛使用的配对友好的椭圆曲线,常用于数字签名和零知识证明。它的设计目标是提高效率,同时保证安全性。本文深入介绍了 BLS12-381 的历史、参数、实现原理及其在密码学中的应用,并提供了丰富的引用和资源供读者进一步学习。
KZG承诺方案是一种加密方法,用于安全地锁定多项式,使得后续验证者可在不透露秘密内容的情况下确认其存在。这种方案在以太坊生态中至关重要,尤其在与零知识证明的结合下,提高了区块链交易的隐私性和可扩展性。KZG的实现依赖于椭圆曲线和复杂的数学原理,适合在其升级过程中高效、安全地验证交易。
本文详细介绍了基于椭圆曲线的数字签名方案,包括ECDSA、EdDSA和Schnorr,分析了它们的原理、实现和应用,并比较了它们在区块链中的使用情况。
本文主要介绍了VRF基于ECC公钥体制的证明验证过程, 基于前一文的基础,本篇顺理成章地说明了验证的内在逻辑,别的地方很难有这样的内在分析!
文章详细介绍了有限域上的椭圆曲线,包括它们的绘制、数学性质以及在密码学中的应用。通过多个示例和代码,展示了如何生成和操作这些曲线,并解释了其与有限域的循环群特性。
这篇文章深入探讨了双线性映射(bilinear pairings)的原理及其在密码学中的应用,特别是在验证乘积的离散对数时。
本文详细介绍了椭圆曲线加法在实数域上的工作原理,通过群论的角度解释了椭圆曲线点的加法操作,并展示了如何在椭圆曲线上进行点加法的具体公式和几何解释。文章还包括了代码示例和数学公式,深入探讨了椭圆曲线的代数性质。