本文深入探讨了环签名技术及其在匿名化方面的应用,使用比特币和门罗币作为案例分析,指出了传统加密方法在现代系统中的不足,并介绍了高效的变种如多层可链接自发匿名组签名。文章结构清晰,包含示例、背景及相关技术细节。整体上,内容具有较強的技术深度和实用性。
零知识证明(ZKP)是一种重要的密码学概念,允许证明者向验证者证明某一声明的真实性,而不泄露任何具体信息。ZKP 被广泛应用于隐私保护和安全性要求高的领域,如身份验证和区块链技术。尽管存在实施复杂性和性能挑战,ZKP 在金融和投票系统等领域的潜在应用使其成为现代隐私和安全解决方案的重要组成部分。
这篇文章详细介绍了椭圆曲线及其在现代加密中的应用,尤其是椭圆曲线密码学(ECC)。文章涵盖了椭圆曲线的基本概念、算术运算、在SageMath中的实现以及ECC在通信安全、数字签名和密钥交换中的应用。通过丰富的代码示例和可视化图表,读者可以深入理解椭圆曲线加密的理论基础和实践应用。
本文详细介绍了Rank-1 Constraint Systems (R1CS) 在零知识证明中的应用,通过多个实例展示如何构建R1CS,使用Circom和snarkjs工具实现电路,并提供了数学公式的详细推导与代码实现。文章涵盖了R1CS的基本定义、与逻辑门电路的关系、构造方法以及多个示例,包括相应的约束解析和代码实现,具有较强的实用性和技术深度。
零知识证明(ZKP)是一种强大的技术,允许一方在没有透露具体信息的情况下,向另一方证明其拥有特定信息。文章详细介绍了ZKP的基本原理、应用领域及其在Rust编程语言中的实现方式,分析了ZKP的优缺点,并提供了Rust代码示例,以示范ZKP如何工作。
本文深入探讨了零知识证明(ZKP)的两种类型:交互式和非交互式。文章详细描述了多个相关算法,包括Schnorr协议、Zcash协议、Fiat-Shamir变换等,阐述了它们的原理、实现方法与应用场景,尤其在数字身份验证、电子投票和加密货币中的作用。最后总结了选择ZKP的重要性,强调了安全性与性能之间的平衡。
这篇文章探讨了如何高效计算BN254椭圆曲线的Frobenius自同态。通过使用平方指数法,作者详细介绍了计算过程,从定义椭圆曲线到实际应用该自同态。文章还附带了完整的代码实现,适合对密码学和椭圆曲线有一定了解的读者。
本文详细介绍了ElGamal加密算法的基本原理与实现,包括密钥生成、加密和解密过程。此外,还讨论了如何使用SageMath实现该算法,并提出了增强安全性的策略,如使用256位随机质数。最后,文章还探讨了ElGamal加密在安全通信、数字签名、密钥交换和电子投票等实际应用中的重要性。
Pedersen承诺是一种密码学技术,允许在不暴露向量内容的情况下对其进行编码,广泛应用于零知识证明和区块链技术中。本文深入探讨了Pedersen承诺的原理、构建、优点和应用,包括对内部乘积和矢量承诺的解释,适合对密码学有一定了解的读者。
作者:白菜标签:Sumcheck,IPA,GKR,Hyrax,VSM,Spice,Spark,Spartan时间:2023-10-06TableofContentTableofContentMotivationIntroductionVSMin
zk 技术堆栈有哪些技术可用,介绍每个层级的示例工具/技术
本文详细介绍了椭圆曲线加法在实数域上的工作原理,通过群论的角度解释了椭圆曲线点的加法操作,并展示了如何在椭圆曲线上进行点加法的具体公式和几何解释。文章还包括了代码示例和数学公式,深入探讨了椭圆曲线的代数性质。
本文详细分析了Frozen Heart漏洞,这一漏洞源于Fiat-Shamir变换的安全性问题。在阐述Fiat-Shamir变换及其在零知识证明中的应用后,文章探讨了弱Fiat-Shamir变换如何导致攻击者在不知秘密值的情况下伪造证明,从而威胁零知识证明系统的安全性。最后,作者强调在实施过程中必须认真审查Fiat-Shamir变换的正确性。
本文详细解释了区块链中两个关键的加密原语:哈希函数和Merkle树。文章从哈希函数的基本机制出发,探讨了其在区块链中的重要性,并介绍了哈希指针的概念。随后,文章深入讨论了传统Merkle树和并发Merkle树,以及它们在Solana区块链中的应用。
本文详细介绍了零知识证明(ZKP)及其在区块链中的应用,特别是zkSNARK协议的原理和实现。文章通过代码示例和图示,讲解了证明者和验证者的角色,以及如何将程序转化为算术电路。
文章详细介绍了有限域上的椭圆曲线,包括它们的绘制、数学性质以及在密码学中的应用。通过多个示例和代码,展示了如何生成和操作这些曲线,并解释了其与有限域的循环群特性。
Thanks感谢SecbitLabs@郭宇前两个月分享的SpartanOverview(尽管当时也没太理解),以及@even在研究方向上的指引(据说Hyrax不太好啃),不至于走太多弯路。Motivation缘于folding,缘于NOVA,缘于Setty,了解到了Sp
本文详细介绍了如何将R1CS(Rank 1 Constraint System)转换为QAP(Quadratic Arithmetic Program),并通过Python代码演示了实现过程,包括有限域算术、多项式插值等关键步骤。
Thanks感谢SecbitLabs@郭宇前两个月分享的SpartanOverview(尽管当时也没太理解),以及@even在研究方向上的指引(据说Hyrax不太好啃),不至于走太多弯路。我的动机缘于folding,缘于NOVA,缘于Setty,了解到了Spartan,
本系列中,我们将分享两项崭新的工作:Lasso 和 Jolt,它们可以显著加速 web3 中应用的扩展和构造。它们共同代表了一种本质上全新的 SNARK 设计方法,可将已广泛部署的工具链的性能提升一个数量级或更多;提供更好、更方便的开发者体验;并使得审计变得更加容易。
扫一扫 - 使用登链小程序
378 篇文章,1439 学分
209 篇文章,345 学分
66 篇文章,279 学分
115 篇文章,274 学分
187 篇文章,266 学分