本文深入探讨了零知识证明(ZKP)的两种类型:交互式和非交互式。文章详细描述了多个相关算法,包括Schnorr协议、Zcash协议、Fiat-Shamir变换等,阐述了它们的原理、实现方法与应用场景,尤其在数字身份验证、电子投票和加密货币中的作用。最后总结了选择ZKP的重要性,强调了安全性与性能之间的平衡。
这篇文章探讨了如何高效计算BN254椭圆曲线的Frobenius自同态。通过使用平方指数法,作者详细介绍了计算过程,从定义椭圆曲线到实际应用该自同态。文章还附带了完整的代码实现,适合对密码学和椭圆曲线有一定了解的读者。
本文详细介绍了ElGamal加密算法的基本原理与实现,包括密钥生成、加密和解密过程。此外,还讨论了如何使用SageMath实现该算法,并提出了增强安全性的策略,如使用256位随机质数。最后,文章还探讨了ElGamal加密在安全通信、数字签名、密钥交换和电子投票等实际应用中的重要性。
Pedersen承诺是一种密码学技术,允许在不暴露向量内容的情况下对其进行编码,广泛应用于零知识证明和区块链技术中。本文深入探讨了Pedersen承诺的原理、构建、优点和应用,包括对内部乘积和矢量承诺的解释,适合对密码学有一定了解的读者。
zk 技术堆栈有哪些技术可用,介绍每个层级的示例工具/技术
本文详细介绍了椭圆曲线加法在实数域上的工作原理,通过群论的角度解释了椭圆曲线点的加法操作,并展示了如何在椭圆曲线上进行点加法的具体公式和几何解释。文章还包括了代码示例和数学公式,深入探讨了椭圆曲线的代数性质。
本文详细解释了区块链中两个关键的加密原语:哈希函数和Merkle树。文章从哈希函数的基本机制出发,探讨了其在区块链中的重要性,并介绍了哈希指针的概念。随后,文章深入讨论了传统Merkle树和并发Merkle树,以及它们在Solana区块链中的应用。
文章详细介绍了有限域上的椭圆曲线,包括它们的绘制、数学性质以及在密码学中的应用。通过多个示例和代码,展示了如何生成和操作这些曲线,并解释了其与有限域的循环群特性。
本文详细介绍了如何将R1CS(Rank 1 Constraint System)转换为QAP(Quadratic Arithmetic Program),并通过Python代码演示了实现过程,包括有限域算术、多项式插值等关键步骤。
本系列中,我们将分享两项崭新的工作:Lasso 和 Jolt,它们可以显著加速 web3 中应用的扩展和构造。它们共同代表了一种本质上全新的 SNARK 设计方法,可将已广泛部署的工具链的性能提升一个数量级或更多;提供更好、更方便的开发者体验;并使得审计变得更加容易。
本文详细介绍了Groth16零知识证明算法的原理、实现及其应用,包括可信设置、证明生成和验证的步骤,并讨论了防止伪造证明的方法以及算法中的安全问题。
本文详细介绍了如何在可信设置的基础上评估二次算术程序(QAP),并解释了如何在不泄露证据的情况下证明QAP的满足性,使用恒定大小的证明。同时还涉及了R1CS、椭圆曲线配对等技术的详细实现。
Nova算法是一种针对IVC(增量可验证计算,Incrementally Verifiable Computation)的新型的零知识证明算法。
文章详细介绍了二次算术程序(QAP)的概念及其在零知识证明中的应用,特别是如何通过拉格朗日插值将Rank 1约束系统(R1CS)转换为QAP,并通过Schwartz-Zippel引理在O(1)时间内验证QAP的等式。
开始鼓捣之前,我希望我知道的。 近年来,椭圆曲线BLS12-381逐渐火了起来。许多协议都将其应用到了数字签名和零知识证明中:Zcash、Ethereum 2.0、Skale、Algorand、Dfinity、Chia 等等。 不幸的是,现有的关于 BLS12-381 的资料里充满着晦涩的咒语,比如
GKR协议在InteractiveProtocol框架里是一套非常经典的协议,里面有很多细节值得关注一下,本系列专题会逐一detail出来:MultilinearExtensionsSum-CheckExtendedMUL/ADD...本章节,我们就一个数气球的toycas
在本文中,作者用一个形象的例子"沃尔多在哪里"给我们介绍零知识证明的概念、进而说明为什么要关注ZKP以及它们何时有用。我们还了解了它们的工作原理,以及它们为我们提供了哪些属性。并探讨了一些当前和未来可能应用
以下是ZK入门包内容的解读
这篇文章深入探讨了双线性映射(bilinear pairings)的原理及其在密码学中的应用,特别是在验证乘积的离散对数时。
文章详细介绍了如何将一组算术约束转换为Rank One Constraint System (R1CS),涵盖了转换中的优化和Circom库的实现方法。
扫一扫 - 使用登链小程序
486 篇文章,578 学分
191 篇文章,532 学分
409 篇文章,386 学分
44 篇文章,320 学分
58 篇文章,312 学分