ZK 语言调查:Noir , o1js , Circom , Leo, Cairo, Lurk
zk-SNARK,即“零知识简洁非交互式知识论证”,使得一名验证者 能够确认一名证明者 拥有某些特定知识,这些知识被称为 witness,满足特定的关系,而无需透露关于见证本身的任何信息。
Circom 语言教程与 circomlib 演示
这篇文章详细介绍了椭圆曲线及其在现代加密中的应用,尤其是椭圆曲线密码学(ECC)。文章涵盖了椭圆曲线的基本概念、算术运算、在SageMath中的实现以及ECC在通信安全、数字签名和密钥交换中的应用。通过丰富的代码示例和可视化图表,读者可以深入理解椭圆曲线加密的理论基础和实践应用。
本文详细介绍了Rank-1 Constraint Systems (R1CS) 在零知识证明中的应用,通过多个实例展示如何构建R1CS,使用Circom和snarkjs工具实现电路,并提供了数学公式的详细推导与代码实现。文章涵盖了R1CS的基本定义、与逻辑门电路的关系、构造方法以及多个示例,包括相应的约束解析和代码实现,具有较强的实用性和技术深度。
零知识证明(ZKP)是一种强大的技术,允许一方在没有透露具体信息的情况下,向另一方证明其拥有特定信息。文章详细介绍了ZKP的基本原理、应用领域及其在Rust编程语言中的实现方式,分析了ZKP的优缺点,并提供了Rust代码示例,以示范ZKP如何工作。
本文深入探讨了零知识证明(ZKP)的两种类型:交互式和非交互式。文章详细描述了多个相关算法,包括Schnorr协议、Zcash协议、Fiat-Shamir变换等,阐述了它们的原理、实现方法与应用场景,尤其在数字身份验证、电子投票和加密货币中的作用。最后总结了选择ZKP的重要性,强调了安全性与性能之间的平衡。
这篇文章探讨了如何高效计算BN254椭圆曲线的Frobenius自同态。通过使用平方指数法,作者详细介绍了计算过程,从定义椭圆曲线到实际应用该自同态。文章还附带了完整的代码实现,适合对密码学和椭圆曲线有一定了解的读者。
本文详细介绍了ElGamal加密算法的基本原理与实现,包括密钥生成、加密和解密过程。此外,还讨论了如何使用SageMath实现该算法,并提出了增强安全性的策略,如使用256位随机质数。最后,文章还探讨了ElGamal加密在安全通信、数字签名、密钥交换和电子投票等实际应用中的重要性。
Pedersen承诺是一种密码学技术,允许在不暴露向量内容的情况下对其进行编码,广泛应用于零知识证明和区块链技术中。本文深入探讨了Pedersen承诺的原理、构建、优点和应用,包括对内部乘积和矢量承诺的解释,适合对密码学有一定了解的读者。
zk 技术堆栈有哪些技术可用,介绍每个层级的示例工具/技术
本文详细介绍了椭圆曲线加法在实数域上的工作原理,通过群论的角度解释了椭圆曲线点的加法操作,并展示了如何在椭圆曲线上进行点加法的具体公式和几何解释。文章还包括了代码示例和数学公式,深入探讨了椭圆曲线的代数性质。
本文详细解释了区块链中两个关键的加密原语:哈希函数和Merkle树。文章从哈希函数的基本机制出发,探讨了其在区块链中的重要性,并介绍了哈希指针的概念。随后,文章深入讨论了传统Merkle树和并发Merkle树,以及它们在Solana区块链中的应用。
文章详细介绍了有限域上的椭圆曲线,包括它们的绘制、数学性质以及在密码学中的应用。通过多个示例和代码,展示了如何生成和操作这些曲线,并解释了其与有限域的循环群特性。
本文详细介绍了如何将R1CS(Rank 1 Constraint System)转换为QAP(Quadratic Arithmetic Program),并通过Python代码演示了实现过程,包括有限域算术、多项式插值等关键步骤。
本系列中,我们将分享两项崭新的工作:Lasso 和 Jolt,它们可以显著加速 web3 中应用的扩展和构造。它们共同代表了一种本质上全新的 SNARK 设计方法,可将已广泛部署的工具链的性能提升一个数量级或更多;提供更好、更方便的开发者体验;并使得审计变得更加容易。
本文详细介绍了Groth16零知识证明算法的原理、实现及其应用,包括可信设置、证明生成和验证的步骤,并讨论了防止伪造证明的方法以及算法中的安全问题。
本文详细介绍了如何在可信设置的基础上评估二次算术程序(QAP),并解释了如何在不泄露证据的情况下证明QAP的满足性,使用恒定大小的证明。同时还涉及了R1CS、椭圆曲线配对等技术的详细实现。
Nova算法是一种针对IVC(增量可验证计算,Incrementally Verifiable Computation)的新型的零知识证明算法。
文章详细介绍了二次算术程序(QAP)的概念及其在零知识证明中的应用,特别是如何通过拉格朗日插值将Rank 1约束系统(R1CS)转换为QAP,并通过Schwartz-Zippel引理在O(1)时间内验证QAP的等式。
扫一扫 - 使用登链小程序
378 篇文章,2030 学分
209 篇文章,378 学分
187 篇文章,353 学分
65 篇文章,270 学分
114 篇文章,228 学分