文章详细介绍了二次算术程序(QAP)的概念及其在零知识证明中的应用,特别是如何通过拉格朗日插值将Rank 1约束系统(R1CS)转换为QAP,并通过Schwartz-Zippel引理在O(1)时间内验证QAP的等式。
写在前面的时隔两个多月终于有机会给NOVAresearch做个了结,期间一直没有机会读revisitingnova,认真读完之后感触比较深,写点儿东西记录下来,也算给自己之前的research一个交待。当然期间也不乏出现hypernova/protostar这些可能更接近“真实战场”的
本文介绍了两项新技术——Lasso和Jolt,它们通过改善SNARK设计,提高了开发者体验和审计能力,显著提升了计算性能。Lasso通过承诺更少更小的值来降低证明成本,而Jolt则为zkVMs提供了一种新框架,从而推动Web3应用的构建与扩展。
本文介绍了两项新技术——Lasso和Jolt,它们为SNARK设计带来了根本性的新方法,显著提升了性能并改善了开发者体验。Lasso提供了更快的查找论证,支持大型表格的高效查找,而Jolt则为零知识虚拟机(zkVM)设计带来了简化,使开发者可以更容易地编写高效的SNARK应用。
本系列专题将基于@郭宇老师的视频、讲义及相关论文,系统梳理一下PlonkSNARK的各个组件,尽量做到代码级地剖析深度。预期将涵盖以下几个章节:PlonkIOP协议实现zerokownledge实现Non-Interactivelookup特性Thanks感谢@郭宇老师
通过一天的交流学习大概弄清了KZG10与Pairing的勾迹关系,对PCS也有了更进一步认识,这里记录一下它们之间的逻辑关系。Thanks感谢@KurtPan博和@miles的热心交流讨论,让我重新认识了“椭圆曲线group上的标量乘法”与“椭圆曲线group上的元素乘法
开始鼓捣之前,我希望我知道的。 近年来,椭圆曲线BLS12-381逐渐火了起来。许多协议都将其应用到了数字签名和零知识证明中:Zcash、Ethereum 2.0、Skale、Algorand、Dfinity、Chia 等等。 不幸的是,现有的关于 BLS12-381 的资料里充满着晦涩的咒语,比如
文章详细介绍了Perun通道框架在UTXO生态系统中的应用,强调了其在提升区块链可扩展性、降低交易成本和增强隐私方面的潜力。通过与其它扩展解决方案的比较,展示了Perun通道在UTXO区块链中的独特优势。
GKR协议在InteractiveProtocol框架里是一套非常经典的协议,里面有很多细节值得关注一下,本系列专题主要通过手推的方式明确各个模块执行的时间成本:MultilinearExtensionsSum-CheckExtendedMUL/ADDOriginalGKRPr
GKR协议在InteractiveProtocol框架里是一套非常经典的协议,里面有很多细节值得关注一下,本系列专题会逐一detail出来:MultilinearExtensionsSum-CheckExtendedMUL/ADD...本章节手推了一下电路MUL/ADDga
GKR协议在InteractiveProtocol框架里是一套非常经典的协议,里面有很多细节值得关注一下,本系列专题会逐一detail出来:MultilinearExtensionsSum-CheckExtendedMUL/ADD...本章节,我们就一个数气球的toycas
GKR协议在InteractiveProtocol框架里是一套非常经典的协议,里面有很多细节,本系列专题会逐一detail出来:MultilinearExtensionsSum-CheckExtendedMUL/ADD...背景MLE为解决Sum-Check问题提供了一
在本文中,作者用一个形象的例子"沃尔多在哪里"给我们介绍零知识证明的概念、进而说明为什么要关注ZKP以及它们何时有用。我们还了解了它们的工作原理,以及它们为我们提供了哪些属性。并探讨了一些当前和未来可能应用
以下是ZK入门包内容的解读
这篇文章深入探讨了双线性映射(bilinear pairings)的原理及其在密码学中的应用,特别是在验证乘积的离散对数时。
什么是Merkle树定义MerkleTree,也叫默克尔树或哈希树,是区块链的底层加密技术,被比特币和以太坊区块链广泛采用。MerkleTree是一种自下而上构建的加密树,每个叶子是对应数据的哈希,而每个非叶子为它的2个子节点的哈希。如何生成Merkle树的数据在solidity中我
HyperPlonk是一种新的零知识证明系统,旨在克服传统Plonk系统在处理大规模计算时遇到的限制,特别是通过去除FFT(快速傅里叶变换)来提高可扩展性,并支持高阶自定义门和查找功能,特别适用于复杂的ZK-EVM应用。
文章详细介绍了如何将一组算术约束转换为Rank One Constraint System (R1CS),涵盖了转换中的优化和Circom库的实现方法。
蒙哥马利模乘算法关键是依赖于一种称为蒙哥马里形式(Montgomery form)的数字的特殊表示。效率高主要是因为避免了昂贵的除法运算。蒙哥马利形式采用一个常数R>N(N是要模的数),该常数与N互素,蒙哥马利乘法中唯一需要的除法是除以R。可以选择常数R,实际上R总是选2的次方,因为2的次方的除法可
本文是关于STARKs中的算术化方法的第三篇文章,比较了AIR与PAIR在低度约束下的表现,探讨了其在计算复杂性和选择器列优化方面的不同。作者详细介绍了FRI协议、低度扩展的计算要求以及从PAIR转换回AIR的过程。整体上文章提供了丰富的理论和应用思考,具有较高的学术价值。
扫一扫 - 使用登链小程序
378 篇文章,1729 学分
209 篇文章,365 学分
187 篇文章,312 学分
65 篇文章,279 学分
115 篇文章,255 学分