Plonky2由PolygonZero团队开发,实现了一种快速的递归SNARK,据其团队公开的基准测试,2020年,以太坊第一笔递归证明需要60s生成,而于今Plonky2在MacBookPro上生成只需170毫秒。下面将逐步剖析Plonky2。整体构造每个零知识证明系统都由
如何学习零知识证明, 明确动力、材料不那么重要,必要独自学习,多分享,不要怕提愚蠢的问题,看看可以做什么,不要对自己太苛刻了。
FIPS 203(草案)的第 2.4 节对所有这些进行了非常清楚和更详细的解释。FIPS 标准实际上在避免形式主义和与工程师交流方面做得很好了。就把这篇当作一个更友好、更务实的总结吧。
zk-merkle-tree 库: 使用 zkSNARK 在以太坊上进行匿名投票
ZK 语言调查:Noir , o1js , Circom , Leo, Cairo, Lurk
zk-SNARK,即“零知识简洁非交互式知识论证”,使得一名验证者 能够确认一名证明者 拥有某些特定知识,这些知识被称为 witness,满足特定的关系,而无需透露关于见证本身的任何信息。
Circom 语言教程与 circomlib 演示
作者:白菜标签:Sumcheck,IPA,GKR,Hyrax,VSM,Spice,Spark,Spartan时间:2023-10-06TableofContentTableofContentMotivationIntroductionVSMin
zk 技术堆栈有哪些技术可用,介绍每个层级的示例工具/技术
Thanks感谢SecbitLabs@郭宇前两个月分享的SpartanOverview(尽管当时也没太理解),以及@even在研究方向上的指引(据说Hyrax不太好啃),不至于走太多弯路。Motivation缘于folding,缘于NOVA,缘于Setty,了解到了Sp
Thanks感谢SecbitLabs@郭宇前两个月分享的SpartanOverview(尽管当时也没太理解),以及@even在研究方向上的指引(据说Hyrax不太好啃),不至于走太多弯路。我的动机缘于folding,缘于NOVA,缘于Setty,了解到了Spartan,
本系列中,我们将分享两项崭新的工作:Lasso 和 Jolt,它们可以显著加速 web3 中应用的扩展和构造。它们共同代表了一种本质上全新的 SNARK 设计方法,可将已广泛部署的工具链的性能提升一个数量级或更多;提供更好、更方便的开发者体验;并使得审计变得更加容易。
Thanks十分感谢@AntalphaLabs上月底提供的线下hackerhouse,有机会亲历并学习SecbitLabs@郭宇老师、@even做zkresearch的思路和方法,并讨论了很多foldingscheme相关的问题非常感谢参加hackerhouse一起交流
Nova算法是一种针对IVC(增量可验证计算,Incrementally Verifiable Computation)的新型的零知识证明算法。
背景下面这张图是revisitingnova中非常经典的描述cyclecurves的图:通过上面这张图,我们可以有以下共识:我们通常称上面一层电路为primary电路,下面一层电路为secondary电路。以secondary电路为例,secondary电路需要把prima
写在前面的时隔两个多月终于有机会给NOVAresearch做个了结,期间一直没有机会读revisitingnova,认真读完之后感触比较深,写点儿东西记录下来,也算给自己之前的research一个交待。当然期间也不乏出现hypernova/protostar这些可能更接近“真实战场”的
本系列专题将基于@郭宇老师的视频、讲义及相关论文,系统梳理一下PlonkSNARK的各个组件,尽量做到代码级地剖析深度。预期将涵盖以下几个章节:PlonkIOP协议实现zerokownledge实现Non-Interactivelookup特性Thanks感谢@郭宇老师
通过一天的交流学习大概弄清了KZG10与Pairing的勾迹关系,对PCS也有了更进一步认识,这里记录一下它们之间的逻辑关系。Thanks感谢@KurtPan博和@miles的热心交流讨论,让我重新认识了“椭圆曲线group上的标量乘法”与“椭圆曲线group上的元素乘法
开始鼓捣之前,我希望我知道的。 近年来,椭圆曲线BLS12-381逐渐火了起来。许多协议都将其应用到了数字签名和零知识证明中:Zcash、Ethereum 2.0、Skale、Algorand、Dfinity、Chia 等等。 不幸的是,现有的关于 BLS12-381 的资料里充满着晦涩的咒语,比如
GKR协议在InteractiveProtocol框架里是一套非常经典的协议,里面有很多细节值得关注一下,本系列专题主要通过手推的方式明确各个模块执行的时间成本:MultilinearExtensionsSum-CheckExtendedMUL/ADDOriginalGKRPr
扫一扫 - 使用登链小程序
106 篇文章,294 学分
3 篇文章,269 学分
55 篇文章,237 学分
13 篇文章,206 学分
16 篇文章,163 学分