本节主要讲了secp256k1的参数,点表示形式和由签名试图恢复公钥的原理
本节主要讲了Schnorr基于离散对数签名和Schnorr 群生成&用法。有了schnorr签名的基础,就可以继续学习相关的门限签名,零知识证明等对基础要求较高的内容。
利用Groth16计算证明之前,需要计算出H。目前,普遍采用的是FFT算法。
本文介绍了如何使用非对称加密来实现信息安全领域中热点话题-数字签名
本节从实用角度讲了公钥密码学标准和RSA的padding标准及使用。可以总结如下: 每次RSA加密明文的长度是受RSA填充模式限制的,但是RSA每次加密的块长度是固定的,就是key length
本节主要介绍了RSA运算中的快速幂模运算,是RSA算法的核心。
Monero隐藏用户交易数量技术之一——Pedersen承诺
本节主要介绍了RSA的两种攻击方法,共模攻击和低指数攻击。
本节主要介绍了RSA的两种攻击方法,重点说了选择密文攻击,并说明了对应的解决方案--最优随机填充(OAEP)。
本节主要介绍了RSA签名过程,并就其安全性做了一定程度的分析。可以看到如果直接使用RSA原理的执行过程,会有不少风险。 关于安全分析,还没有说完,还有硬件故障攻击和选择密文攻击,尤其后者很重要。
在接下来一个系列的文章中将为你一一介绍,从零知识证明的概念一直到零知识证明背后的密码学实现。
本节主要介绍了欧拉函数积性证明和扩展剩余定理,扩展剩余定理应用更加广泛
本节主要介绍了中国剩余定理,也是数论中重要的定理之一。其中过程用到了模运算的乘法规则和逆元的求法,可见这一系列知识点是环环相扣的,层层递进的。
前文介绍了一次性地址,本文将以例子的形式来介绍Monero的核心技术——环签名
本节主要介绍了欧拉定理和欧拉函数的性质,欧拉定理是费马小定理的扩展,根据欧拉函数性质2, n是质数时退化成费马小定理。在研究欧拉定理及欧拉函数过程中用到了贝祖定理,中国剩余定理等。
每次发送交易时,发送方根据接收方的地址,随机产生临时公钥来接收交易。由于临时公钥的随机性,交易接收方的不同交易之间的关联性被打破了。而拥有临时公钥对应私钥的接收方,可以用该临时私钥将来消费这笔UTXO。
Monero不单使用了较为通用的区块链技术来实现账本一致性问题。并且使用较为精妙的密码学技术来解决隐私问题。
本文将构建一个zk-dApp(零知识证明 DApp),以证明用户是否属于某个特定组,而无需透露用户具体是谁。
本节主要介绍了RSA算法加解密过程及原理,RSA还有很多相关内容,包括签名,具体运算过程,背景知识,安全性等。后续几篇将分别介绍,以求知识系统的完备性。
费马小定理是初等数论四大定理(威尔逊定理,欧拉定理(数论中的欧拉定理),中国剩余定理(又称孙子定理),费马小定理)之一,其他定理如欧拉定理,之前文章也提过,后续会抽时间单独介绍。关于费马小定理的应用,在求解模逆运算的时候第一种方法便是使用费马小定理求解,还可应用在快速幂模运算等。
扫一扫 - 使用登链小程序
41 篇文章,432 学分
72 篇文章,333 学分
29 篇文章,272 学分
157 篇文章,176 学分
20 篇文章,175 学分